Conservation of Momentum: Example Problem 1
A 20 lb sack of sand B is thrown with a velocity of 5 fps onto a 40 lb sled A moving to the right at 10 fps . If the sack remains on the sled and if friction between the sled and the ground is negligible, please determine:
(a) The final velocity [$\mathrm{v}_{2} @ \theta$] of the sled and sack.
(b) The impulse of the sack onto the sled.

Write the x and y scalar conservation of momentum equations:

Momentum in

$$
\xrightarrow{+} \quad m_{A} v_{A x_{1}}+m_{B} v_{B X_{1}}=\left(m_{A}+m_{B}\right) v_{2 x}
$$ the x-direction:

Final Vector, $\mathbf{v}_{\mathbf{2}}$:

$$
\begin{aligned}
\stackrel{\rightharpoonup}{2}_{2} & =[7.67 \hat{i}+1.33 \hat{j}] \mathrm{fps} \\
& =\left[7.78 \mathrm{fps} @ 9.84^{\circ}\right]
\end{aligned}
$$

To find the impulse of the sack onto the sled, write the ImpulseMomentum Equation for the sled A:

$$
\begin{aligned}
\stackrel{\rightharpoonup}{2}_{2} & =[7.67 \hat{i}+1.33 \hat{j}] \mathrm{fps} \\
& =\left[7.78 \mathrm{fps} @ 9.84^{\circ}\right]
\end{aligned}
$$

Impulse of the sack onto the sled:

Write the I-M Eq for the SLED

$$
\int \stackrel{\rightharpoonup}{\mathrm{F} d t}=m \stackrel{\rightharpoonup}{\mathrm{v}}_{A 2}-\bar{m}_{\mathrm{v}_{A 1}}=m\left(\overrightarrow{\mathrm{v}}_{\mathrm{A} 2}-\overrightarrow{\mathrm{v}}_{\mathrm{A} 1}\right)
$$

$$
=\left[\frac{40}{32.2} \text { slug }\right][[7.62 \hat{i}+1.33 \hat{j}]-[10 \hat{i}+0 \hat{\mathrm{j}}]]
$$

$$
\int \overrightarrow{\mathrm{F}} \mathrm{dt}=[-2.89 \hat{\mathrm{i}}+1.65 \hat{\mathrm{j}}]=\left[3.33 @ 150.3^{\circ}\right] \mathrm{lb}-\mathrm{sec}
$$

Sack onto sled

Picture of the initial and final momentum of the sled and the effect of the impulse.

Impulse of the Sack onto the Sled

$$
\int \stackrel{\rightharpoonup}{\mathrm{F}} \mathrm{dt}=\left[3.33 @ 150^{\circ}\right] \mathrm{lb}-\mathrm{sec}
$$

The impulse of the sack onto the sled acts to slow the sled in the x direction and to impart a small y-direction velocity. The overall speed v_{2} of the sledsack combo is smaller (7.78 vs. 10 fps) than the original sled.

When the sack lands on the sled, the sack slides momentarily until the sack and sled speeds match. A momentary friction force acts between the sack and

Picture of the initial and final momentum of the sled and the effect of the impulse.

Impulse of the Sack onto the Sled

$$
\int \overline{\mathrm{F}} \mathrm{dt}=\left[3.33 @ 150^{\circ}\right] \mathrm{lb}-\mathrm{sec}
$$ the sled. This friction force (the x-component) briefly accelerates the sack and decelerates the sled until their x speeds match. The y-compoent of friction accels the sled and imparts a y-velocity to the sled....

