Conservation of Momentum: Example Problem 2
A 140 grain bullet moving at 2000 fps strikes and embeds in a 10 lb wooden block. Please determine:
(a) The velocity of the wooden block with the embedded bullet.
(b) The maximum height $\Delta \mathrm{h}$ to which the block rises..

Note: $\mathbf{7 0 0 0}$ grains $=\mathbf{1} \mathbf{l b}$.

Discussion...

This is called a "ballistic pendulum." Before modern chronographs were developed to measure the speed of bullets exiting the barrel of a gun, this was the method of choice. Fire the bullet at a block of known weight or mass, measure the elevation change, and use conservation of momentum to calculate the speed of the bullet.

This is a two step problem.
(1) Use Cons of Momentum to calculate the speed once the bullet fully embeds in the block.
(2) Use the Work-Energy Equation to calculate the max height $\Delta \mathrm{h}$ reached by the block (at which the block comes to rest).

Remember: 7000 grain $=1 \mathrm{lb}$

Write the x scalar conservation of momentum equation:

Remember: 7000 grain $=1 \mathrm{lb}$

$$
\mathbf{v}_{2 x}=3.99 \mathrm{fps}
$$

Write a work-energy equation for the block:

Write the Work-Energy Equation:

$$
\left.\begin{array}{c}
\frac{1}{2} m v^{2}=m g h \\
\frac{1}{2} \mathrm{~m}(3.99)^{2}=\operatorname{m(32.2)h} \\
h=0.2475 \mathrm{ft} \\
=2.97 \mathrm{inch}
\end{array}\right] .
$$

