Particle Impact: Ex Prob 2 (Semi-Oblique)

For the impact problem shown below, please determine the velocities of particles A and B after impact. (A and B are identical, thus mass $A=$ mass B)

Think! It seems that $v_{B 2}$ will be at some angle as shown. What about $\mathrm{v}_{\mathrm{A} 2}$?

Identify Plane of Contact, Line of Impact, and resolve vectors into components.

What about $\mathrm{v}_{\mathrm{A} 2}$? If there is no impulse of friction along the plane of contact, then no y momentum can be imparted to A. So, $\mathrm{v}_{\mathrm{A} 2}$ will act along the \mathbf{x} axis. It's y component will remain zero. (That's why I call this a "semi-oblique" problem.)

Solve equations (1) and (2):

$$
v_{B x 2}=-11 \mathrm{fps}=11 \mathrm{fps}
$$

$$
\mathbf{v}_{\mathrm{Ax} 2}=+7 \mathrm{fps} \longrightarrow
$$

Calculate the final magnitude and angle of $\overrightarrow{\mathbf{v}}_{\mathrm{B}_{2}}$:

