Particle Impact: Ex Prob 4 (Ball Oblique on Surface)

A ball moving at speed $v_{1}=10 \mathrm{~m} / \mathrm{s}$ strikes the ground at an angle of $\theta_{1}=60^{\circ}$ and rebounds with speed v_{2} at angle θ_{2}. Please determine \mathbf{v}_{2} and θ_{2}. Assume no friction between the ball and the ground, and treat the ball as a particle.

Can you guess the rebound angle? Rebound speed v_{2} ? Students usually think that the ball rebounds at the same angle at which it strikes the surface. In other words, they think that $\theta_{2}=\theta_{1}=60^{\circ}$.
This is only true,
however, if $\mathrm{e}=1$.
If $\mathrm{e}<1$ (which is always, really!)
 then $\theta_{2}<\theta_{1}$, and $v_{2}<v_{1}$. Let's calculate these and see!

Key step: Resolve the \mathbf{v}_{1} components....

Resolve the v_{1} vector into x and y components:

$$
\mathrm{v}_{1 \mathrm{x}}=5 \mathrm{~m} / \mathrm{s} ; \quad \mathrm{v}_{1 \mathrm{y}}=8.66 \mathrm{~m} / \mathrm{s} .
$$

(x direction): Along the surface: If there is zero friction, then there is no friction impulse in the x direction. Thus, $\mathrm{v}_{2 \mathrm{x}}=\mathrm{v}_{1 \mathrm{x}}=5 \mathrm{~m} / \mathrm{s}$.
(y direction): Normal to the surface: Recall from the last example problem that $\mathrm{v}_{2 \mathrm{y}}=-\mathrm{ev} \mathrm{v}_{1 \mathrm{y}}$; thus, $\mathrm{v}_{2 \mathrm{xy}}=\mathrm{ev}_{1 \mathrm{xy}}=(.75)(8.66)=6.5 \mathrm{~m} / \mathrm{s}$.

Remember this:

Normal impulse of ground onto ball.

Write the $\mathbf{v}_{\mathbf{2}}$ vector:

See the next page to learn where this equation comes from....

Let's

 generalizee vs. θ_{1} and θ_{2} :

$$
\begin{aligned}
& \tan \theta_{2}=\frac{v_{2 y}}{v_{2 x}}=\frac{e v_{1 y}}{v_{1 x}} \\
& \frac{e v_{1 y}}{v_{1 x}}=\frac{e y / 1 \sin \theta_{1}}{y_{1} \cos \theta_{1}}=e \tan \theta_{1} \\
& \text { Thus: } e \tan \theta_{1}=\tan \theta_{2} \\
& \text { or: } \tan \theta_{2}=e \tan \theta_{1}
\end{aligned}
$$

Conclusion: Rebound angles θ_{2} for particles striking smooth surfaces are less than incident angles θ_{1} for $e<1$.

