Particle Impact: Ex Prob 4 (Ball Oblique on Surface)

A ball moving at speed $v_1 = 10$ m/s strikes the ground at an angle of $\theta_1 = 60^\circ$ and rebounds with speed v_2 at angle θ_2 . Please determine v_2 and θ_2 . Assume no friction between the ball and the ground, and treat the ball as a particle.

Can you guess the rebound angle? Rebound speed v₂? Students usually think that the ball rebounds at the same angle at which it strikes the surface. In other words, they think that $\theta_2 = \theta_1 = 60^\circ$. This is only true, however, if e = 1. If e < 1 (which is always, really!) then $\theta_2 < \theta_1$, and $v_2 < v_1$. Let's calculate these and see!

Key step: Resolve the v_1 components.... Resolve the v_1 vector into x and y components:

 $v_{1x} = 5 \text{ m/s}; v_{1y} = 8.66 \text{ m/s}.$

(x direction): Along the surface: If there is zero friction, then there is no friction impulse in the x direction. Thus, $v_{2x} = v_{1x} = 5$ m/s.

(y direction): Normal to the surface: Recall from the last example problem that $v_{2y} = -ev_{1y}$; thus, $v_{2xy} = ev_{1xy} = (.75)(8.66) = 6.5$ m/s.

Write the v_2 vector:

See the next page to learn where this equation comes from....

 $\begin{array}{c|c} e v_{1y} \\ v_{2y} \\ v_{1x} \\ v_{1y} \\ v_{1y} \\ v_{1y} \\ v_{1y} \\ v_{1x} \\ \theta_{1} \\ v_{2x} \\ ev_{1x} \\ ev_{1y} \\ v_{2x} \\ ev_{1x} \\ ev_{1y} \\ v_{1x} \\ ev_{1y} \\ ev_{1x} \\ ev_{1y} \\ ev_{1x} \\ ev_{$

Conclusion: Rebound angles θ_2 for particles striking smooth surfaces are less than incident angles θ_1 for e < 1 .

Let's generalize e vs. θ_1 and θ_2 :