Impact for Particles

The focus of this class is particle impact. We will not discuss impact for rigid bodies.

Terminology:

1. Central Impact:

The incident and departure velocities of the two particles are collinear. (After impact, A and B move along same line.)

2. Oblique Impact:
(See next page)

Terminology (cont'd): Oblique Impact
2. Oblique Impact: Initial velocities of A and B are NOT collinear. Particles A and B strike a glancing blow and their departure velocities (at least one, A or B) are at angles to their initial velocities.

Important!!
You must draw and label the plane of contact and line of impact.

Assume no friction impulse along the plane of contact, thus:

$$
\begin{aligned}
& v_{\text {Ay } 2}=v_{\text {Ay1 } 1} \\
& v_{\text {By } 2}=v_{\text {By } 1}
\end{aligned}
$$

Terminology (cont'd): Oblique Impact
Labeling the plane of contact vs. the line of impact: Some texts label these tangential (t) and normal (n), but these confuse me. I always have to think about which is which. So, I usually just draw the picture and label them x and y. You may do either, whichever makes sense to you. The point is this: Draw them and label them with something!
Then, resolve the vectors into components along these axes.

Details of Impact; Coefficient of Restitution

What happens during impact? An Up-Close View:

Description of Phase of Impact
Before impact, relative velocity

$$
v_{B 1 / A 1}=v_{B 1}-v_{A 1}
$$

Deformation phase:

Kinetic energy stored as deformation
Max deformation: A and B
momentarily share same velocity, \mathbf{v}.
Restitution phase: Energy stored as deformation converted back to KE.

After impact: If $e<1$, some KE lost.
Rel Velocity: $\mathbf{V}_{\mathbf{B} 2 / A 2}=\mathbf{V}_{\mathbf{B} 2}-\mathbf{V}_{\mathbf{A} 2}$

A Close View of Impact of Particles A and B

Coefficient of Restitution, e:

$$
\mathbf{e}=\frac{-v_{B_{2} / A 2}}{v_{B 1 / A 1}}=\frac{-\left(v_{B_{2}}-v_{A 2}\right)}{\left(v_{B_{1}}-v_{A 1}\right)}=\frac{\left(v_{B_{2}}-v_{A 2}\right)}{\left(v_{A 1}-v_{B 1}\right)}
$$

Details of Impact; Coefficient of Restitution

Coefficient of Restitution, e: (Abbreviated as "COR") COR, e, is a measure of the energy stored in deformation during impact which is recovered back to kinetic energy.
More precisely.... (see your text for a derivation...)

$$
\begin{aligned}
& \mathbf{e}=\frac{\begin{array}{c}
\text { Relative } \\
\text { Departure Velocity }
\end{array}}{\text { Relative }}=\frac{-\mathbf{v}_{\mathrm{B}_{2} / \mathrm{A} 2}}{\mathbf{v}_{\mathrm{B} 1 / \mathrm{A} 1}}=\frac{-\left(\mathrm{v}_{\mathrm{B} 2}-\mathrm{v}_{\mathrm{A} 2}\right)}{\left(\mathbf{v}_{\mathrm{B} 1}-\mathrm{v}_{\mathrm{A} 1}\right)}=\frac{\left(\mathbf{v}_{\mathrm{B} 2}-\mathrm{v}_{\mathrm{A} 2}\right)}{\left(\mathrm{v}_{\mathrm{A} 1}-\mathrm{v}_{\mathrm{B} 1}\right)} \\
& \text { Incident Velocity }
\end{aligned}
$$

Cases: e=1 "Perfectly Elastic" Rel Departure Velocity = Rel Incident Velocity
e = $0 \quad$ "Perfectly Plastic" (Particles stick together...) Rel Departure Velocity = 0
$0<e<1$ Range for e is between zero and one. Typical values: . 5 to . 8 for balls

More on Coefficient of Restitution (COR)

Kinetic Energy recovered after impact is approx e^{2}.
A COR (e) of 0.8 sounds high. But the KE after impact is $(.8)^{2}=$ 64% of the original KE, meaning 36% of KE was lost!
Applications:
Golf Drivers: The USGA limits the COR of a driver's face to be no greater than $\mathrm{COR}=0.83$. They have on-site testing facilities to test compliance (if requested).
High school and college metal baseball bats: Using metal bats saves money because wood bats break. But metal bats have a higher COR (batted balls have a 5-10\% higher velocity off of a metal bat) than wooden bats. Batting and slugging averages are inflated because of this. Pitchers are also subject to injury.

Cool high speed videos of balls on bats:
http://www.kettering.edu/~drussell/bats-new/ball-bat-0.html
Also excellent information at this site about bats and balls. Highly recommended.

© Champaign News-Gazette, April 19, 2003

Various Balls: Rebound Height (function of energy recovered from bounce collision)

Equations for Impact Problems

(Let x be the Line of Impact, y be the Plane of Contact)
Along the Plane of Contact: (Assumes no friction impulse along this plane....)

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{A y 2}}=\mathbf{v}_{\mathrm{A} \mathbf{y}_{1}} \\
& \mathbf{v}_{\mathrm{By} 2}=\mathbf{v}_{\mathrm{B} \mathbf{y}_{1}}
\end{aligned}
$$

Along the Line of Impact (Conservation of Momentum:

$$
\pm \quad m_{A} v_{A x_{1}}+m_{B} v_{B X_{1}}=m_{A} v_{A x_{2}}+m_{B} v_{B x_{2}}
$$

Also along the Line of Impact:

Along the Line of Impact (x-direction...)

Write TWO equations to solve for TWO unknowns $\left(\mathrm{v}_{\mathrm{Ax} 2}, \mathrm{v}_{\mathrm{Bx} 2}\right)$:
Equation 1: Conservation of Momentum

$$
\pm \quad m_{A} v_{A x_{1}}+m_{B} v_{B x_{1}}=m_{A} v_{A x}+m_{B} v_{B \times 2}
$$

Equation 2: "e Equation", Coeff of Restitution Equation

$$
\pm \quad e=\frac{\left(v_{B \times 2}-v_{A \times 2}\right)}{\left(v_{A \times 1}-v_{B \times 1}\right)}
$$

We know: $\mathbf{v}_{\mathrm{Ax} 1}, \mathbf{v}_{\mathrm{Bx} 1}$

Solve for: $\mathbf{v}_{\mathrm{Ax} 2}, \mathbf{v}_{\mathrm{Bx} 2}$ using these two equations.

