Particle F=ma (n-t): Example Problem 5

An automobile drives around a banked curve on a rural road. (a) What direction does friction act? (b) Obtain an equation that relates car speed v, bank angle θ , curve radius r, and friction μ .

Obtain an equation that relates car speed v, bank angle θ , curve radius r, and friction μ .

If you know $\theta,\,\mu$ and r, and need to find the car speed v, this is an easy problem.

If you know v, r and μ and need to find θ , then you have to iterate or use an equation solver to get θ .

High Speed Case (Car on Verge of Slipping Upslope)

 $\frac{\sin\theta + \mu\cos\theta}{\cos\theta - \mu\sin\theta} = \frac{\mathbf{v}^2}{\mathbf{gr}}$

If you know θ , μ and r, and need to find the car speed v, this is an easy problem.

For example, let θ = 20, μ = .3, r = 200 ft, g = 32.2 fps²; find the speed v at which the car is on the verge of slipping upslope.

High Speed Case (Car on Verge of Slipping Upslope)

$$\frac{\sin\theta + \mu\cos\theta}{\cos\theta - \mu\sin\theta} = \frac{\mathbf{v}^2}{\mathbf{gr}}$$

If you know v, r and μ and need to find θ , then you have to iterate or use an equation solver to get θ . Let $\mu = .3$, r = 100 m, g = 9.81 m/s², and v = 20 m/s; find the angle θ at which the car is on the verge of slipping upslope.

High Speed Case (Car on Verge of Slipping Upslope)

Low Speed Case (Car on Verge of Slipping Downslope)

