Particle F=ma (n-t): Example Problem 5

An automobile drives around a banked curve on a rural road. (a) What direction does friction act? (b) Obtain an equation that relates car speed v , bank angle θ, curve radius \mathbf{r}, and friction μ.

Again, what direction does friction act?
Answer: "It depends!"

An auto as a particle, with one \mathbf{N} force,

At high speed, one F force.

Obtain an equation that relates car speed v, bank angle θ, curve radius \mathbf{r}, and friction μ.

$\begin{gathered}\text { Eqns of } \\ \text { Motion } \\ \text { from } \mathbf{F B D}\end{gathered}$$\left\{\begin{aligned}+ & \mathbf{N}(\sin \theta)+\mathbf{F}(\cos \theta)=\frac{\mathbf{m v}}{\mathbf{r}} \\ \nmid & \mathbf{N}(\cos \theta)-\mathbf{F}(\sin \theta)-\mathbf{m g}=\mathbf{0}\end{aligned}\right.$

$$
\begin{gathered}
\begin{array}{c}
\text { Assume on } \\
\text { verge of slip. } \\
\text { Sub in }
\end{array} \\
\hline \mathbf{F = \mu \mathbf { N }}
\end{gathered} \begin{cases}(1) & \mathbf{N}(\sin \theta)+\mu \mathbf{N}(\cos \theta)=\frac{\mathbf{m v}^{2}}{\mathbf{r}} \\
(2) & \mathbf{N}(\cos \theta)-\mu \mathbf{N}(\sin \theta)=\mathbf{m g}\end{cases}
$$

(\mathbf{N} and m cancel and drop out...)

If you know θ, μ and r, and need to find the car speed v, this is an easy problem.

If you know v, r and μ and need to find θ, then you have to iterate or use an equation solver to get θ.

High Speed Case (Car on Verge of Slipping Upslope)

$$
\frac{\sin \theta+\mu \cos \theta}{\cos \theta-\mu \sin \theta}=\frac{\mathbf{v}^{2}}{\mathbf{g r}}
$$

If you know θ, μ and r, and need to find the car speed v, this is an easy problem.

For example, let $\theta=20, \mu=.3, r=200 \mathrm{ft}, \mathrm{g}=32.2 \mathrm{fps}^{2}$; find the speed v at which the car is on the verge of slipping upslope.

High Speed Case (Car on Verge of Slipping Upslope)

$$
\frac{\boldsymbol{\operatorname { s i n }} \theta+\mu \cos \theta}{\cos \theta-\mu \sin \theta}=\frac{\mathbf{v}^{2}}{\mathbf{g r}}
$$

If you know v, r and μ and need to find θ, then you have to iterate or use an equation solver to get θ. Let $\mu=.3, \mathrm{r}=100 \mathrm{~m}$, $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$, and $\mathrm{v}=20 \mathrm{~m} / \mathrm{s}$; find the angle θ at which the car is on the verge of slipping upslope.

High Speed Case (Car on Verge of Slipping Upslope)

$$
\frac{\sin \theta+\mu \cos \theta}{\cos \theta-\mu \sin \theta}=\frac{\mathbf{v}^{2}}{\mathbf{g r}}
$$

Car on banked curve, high
speed case, slip impending
UP-slope.

Low Speed Case (Car on Verge of Slipping Downslope)
(Signs reverse

$$
\frac{\sin \theta-\mu \cos \theta}{\cos \theta+\mu \sin \theta}=\frac{\mathbf{v}^{2}}{\mathbf{g r}}
$$

Zero Friction Case (set $\mu=0$):

$$
\frac{\boldsymbol{\operatorname { s i n }} \theta}{\boldsymbol{\operatorname { c o s }} \theta}=\boldsymbol{\operatorname { t a n }} \theta=\frac{\mathbf{v}^{2}}{\mathbf{g r}}
$$

Car on banked curve, zero friction case. (Highway design case.)

This is the highway

 design case. For a given speed, v, find the bank angle, θ, at which zero friction is needed to keep the car on the curve.Curve Not Banked ($\theta=0$) Case:

$$
\frac{0-\mu \cdot 1}{1+\mu \cdot 0}=\mu=\frac{\mathbf{v}^{2}}{\mathrm{gr}}
$$

Car on level
curve $(\theta=0)$
case.

Simplified...

$$
\mu=\frac{\mathbf{v}^{\mathbf{2}}}{\mathbf{g r}}
$$

Solving
for $\mathbf{v}_{\text {max }}$

$$
\mathbf{v}_{\max }=\sqrt{\mu \mathbf{g r}}
$$

