Particle Kinematics: Circular Motion

Circular Motion Problems

Magnitude of the à vector: (the "total acceleration")

$$
|\stackrel{\rightharpoonup}{\mathrm{a}}|=\sqrt{a_{t}^{2}+a_{n}^{2}}
$$

- Particle moves along a circular path.
- All the same cases as straight line problems.
- Velocity acts tangent to path.
- Position, s, is along the curve.
- Acceleration has both $\mathbf{a}_{\mathbf{t}}$ and $\mathbf{a}_{\mathbf{n}}$ components.
- DO NOT forget $\mathbf{a}_{\mathbf{n}}$.
- A problem will often ask for "magnitude of accel"

Circular Motion

$$
a_{n}=\frac{v^{2}}{r}
$$

Magnitude of the $\overline{\mathbf{a}}$ vector: (the "total acceleration")

$$
|\stackrel{\rightharpoonup}{a}|=\sqrt{a_{t}^{2}+a_{n}^{2}}
$$

Motion along the (circular) curve is given by a v or a_{t} function.
Cases: (1) $a_{t}=$ constant
(2) $a_{t}=f(t)$
(3) $a_{t}=f(v)$
(4) $a_{t}=f(s)$
(5) $v=f(s)$
...etc.

If a function is given, match it with a defining equation and integrate.
(1) $a_{t}=\frac{d v}{d t}$
(2) $v=\frac{d s}{d t}$
(3) $\mathbf{a}_{\mathrm{t}} \mathbf{d s}=\mathbf{v d v}$

If $\mathbf{a}_{\mathbf{t}}=$ constant, use these:
(1) $v=v_{0}+a_{t} t$
(2) $s=s_{0}+v_{0} t+\frac{1}{2} a_{t} t^{2}$
(3) $v^{2}=v_{0}^{2}+2 a_{t}\left(s-s_{0}\right)$

Analogous to straight line motion problems, except accel is now the a_{t} component, and distance s is along a curve.

Circular Motion: Simple Example (thought problem....)
A car moves along a circular track with constant speed: v=30 mph What is the car's acceleration?

Circular Motion: Simple Example (answers...)
A car moves along a circular track with constant speed: v=30 mph

What is the car's acceleration?

Most students see "constant speed" and say "zero acceleration."

Yes, the speed is constant, so a_{t} is zero. But, the velocity (vector) is not constant. The velocity vector is changing directions. There is a normal acceleration $\left(a_{n}\right)$ that points toward the center that continuously changes the \mathbf{v} vector direction.
$v=30 \mathrm{mph}\left[\frac{88 \mathrm{fps}}{60 \mathrm{mph}}\right]$
v = 44 fps
$a_{n}=\frac{v^{2}}{r}=\frac{44^{2}}{100}=19.4 \mathrm{fps}^{2}$
$\mathbf{a}_{\mathbf{n}}$ points toward circle center

Circular Motion: Simple Example 2

A car starts from rest and moves along a circular track. Its speed increases at: $a_{t}=0.5 \mathrm{fps}^{2}$

Find vand accel vectors for the car at various positions (1) through (7).

Can you guess what the velocity and acceleration vectors will look like?

Circular Motion: Simple Example 2

A car starts from rest and moves along a circular track. Its speed increases at: $a_{t}=0.5 \mathrm{fps}^{2}$

Find v and accel at various positions.

Notice:
(1) v grows. (blue arrows)
(2) $a_{t}=$ constant (red arrows)
(3) a_{n} grows (green arrows)

Circular Motion: Simple Ex 2

 Sample calculations...45 ${ }^{\circ}$ Arc Length: s $=\mathbf{r} \theta$

$$
\begin{aligned}
& s=(100)\left(\frac{\pi}{4}\right)=25 \pi \\
& s=78.5 \mathrm{ft}
\end{aligned}
$$

Sample Calculations: Circular Motion, $\mathbf{a}_{\mathbf{t}}=$ Const

$$
\begin{aligned}
& \text { From } \text { (1) } 2 \text { : } \\
& \begin{aligned}
v_{2}^{2} & =v_{1}^{2}+2 a_{t}\left(s_{2}-s_{1}\right) \\
& =8.86^{2}+2(.5)(78.5) \\
v_{2} & =12.5 \mathrm{fps} \\
a_{n_{2}} & =\frac{v^{2}}{r}=\frac{12.5^{2}}{100} \\
a_{n_{2}} & =1.57 \mathrm{fps}^{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { From (0) to (1): } \\
& v_{1}^{2}=v_{0}^{2}+2 a_{t}\left(s_{1}-s_{0}\right) \\
&=0+2(.5)(78.5) \\
& v_{1}=8.86 \mathrm{fps} \\
& a_{n_{1}}=\frac{v^{2}}{r}=\frac{8.86^{2}}{100} \\
& a_{n_{1}}=.785 \mathrm{fps}^{2}
\end{aligned}
$$

