Particle Kinematics: Circular Motion

 $a + a_{t} + v$ a + v $r \cdot a_{n} = \frac{v^{2}}{r}$

Magnitude of the a vector: (the "total acceleration")

Circular Motion Problems

- Particle moves along a circular path.
- All the same cases as straight line problems.
- Velocity acts tangent to path.
- Position, s, is along the curve.
- Acceleration has both a_t and a_n components.
- DO NOT forget a_n.
- A problem will often ask for "magnitude of accel"

Circular Motion: Simple Example (thought problem....)

Circular Motion: Simple Example (answers...)

A car moves along a circular track with constant speed: v = 30 mph

What is the car's acceleration?

Most students see "constant speed" and say "zero acceleration."

Yes, the *speed* is constant, so a_t is zero. But, the velocity (vector) is *not* constant. The velocity vector is changing directions. There is a normal acceleration (a_n) that points toward the center that continuously changes the v vector direction.

Circular Motion: Simple Example 2

Circular Motion: Simple Example 2

A car starts from rest and moves along a circular track. Its *speed* increases at: $a_t = 0.5 \text{ fps}^2$

Find v and accel at various positions.

Notice:

(1) v grows.(blue arrows)

(2) a_t = constant
(red arrows)

(3) a_n grows (green arrows)

