Particle Kinematics: Intro to Curvilinear Motion

Current unit: Particle Kinematics
Last two classes: Straight Line Motion
Today:
(a) Intro to Curvilinear Motion
(b) Circular Motion
(c) Projectile Motion

Introduction to
Curvilinear Motion

If know $y=f(x)$ path, can use it to get v direction (angle):

$$
\stackrel{\rightharpoonup}{\mathbf{v}}=[\mathbf{v}<\theta]
$$

$\theta=\boldsymbol{\operatorname { t a n }}^{-1} \mathbf{y}^{\prime}$

Knowing this...
Can use path slope to get velocity angle. or,
Can use velocity components to get path slope.

If know v_{x} and v_{y} (as in projectile motion), can use these to get $|\vec{v}|$ and the angle, θ.

$$
|\stackrel{\rightharpoonup}{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}}
$$

$$
\theta=\tan ^{-1} \frac{\mathbf{v}_{\mathbf{y}}}{\mathbf{v}_{\mathrm{x}}}
$$

Introduction to
Curvilinear Motion

Key Principle \#2:
Acceleration always acts toward the concave side of the curve.

The accel vectors $\overrightarrow{\mathbf{a}}_{\mathbf{1}}$ and $\overline{\mathbf{a}}_{\mathbf{3}}$ act toward the concave side of the curve.

If we resolve the \bar{a} 's into a_{n} and a_{t} components: a_{t} components act tangent to the curve a_{n} components act \perp to $\stackrel{\rightharpoonup}{\mathbf{v}}$, toward the concave side of the curve.

Significance of the $\mathbf{a}_{\mathbf{t}}$ and $\mathbf{a}_{\mathbf{n}}$ components? $\mathbf{a}_{\mathbf{t}}$ components change the length (speed) of $\stackrel{\rightharpoonup}{\mathbf{v}}$. a_{n} components change the direction of $\overrightarrow{\mathbf{v}}$.

Intro to
Curvilinear Motion

Key Principle \#3: a_{n} acts toward the center of curvature and may be calc'd from $a_{n}=v^{2} / \rho$

$$
\rho=\left|\frac{\left[1+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}{y^{\prime \prime}}\right|
$$

$\rho=$ "radius of curvature" of a general curve, $y=f(x)$ where, $y^{\prime}=f^{\prime}(x)$ and $y^{\prime \prime}=f^{\prime \prime}(x)$

Normal Accel, $\mathbf{a}_{\mathbf{n}}$

$$
a_{n}=\frac{v^{2}}{\rho}
$$

a_{n} acts \perp to $\stackrel{\rightharpoonup}{\mathbf{v}}$, toward center of curvature. Changes $\overrightarrow{\mathbf{v}}$ direction.

