Particle Kinematics: Intro to Curvilinear Motion

Current unit: Particle Kinematics

Last two classes: Straight Line Motion

Today:

- (a) Intro to Curvilinear Motion
- (b) Circular Motion
- (c) Projectile Motion

βz

Introduction to Curvilinear Motion

Key Principle #1: Velocity is always tangent to the path. \vec{v}_1

If know y = f(x) path, can use it to get v direction (angle):

Knowing this... Can use path slope to get velocity angle. *or,* Can use velocity components to get path slope. If know v_x and v_y (as in projectile motion), can use these to get $|\vec{v}|$ and the angle, θ .

$$\left|\vec{\mathbf{v}}\right| = \sqrt{\mathbf{v}_{\mathbf{x}}^2 + \mathbf{v}_{\mathbf{y}}^2}$$

$$\theta$$
 = tan⁻¹ $\frac{v_y}{v_x}$

Introduction to Curvilinear Motion

Key Principle #2: Acceleration always acts toward the concave side of the curve. The accel vectors \overline{a}_1 and \overline{a}_3 act toward the concave side of the curve.

If we resolve the \overline{a} 's into a_n and a_t components: a_t components act tangent to the curve a_n components act \perp to \overline{v} , toward the concave side of the curve.

Significance of the a_t and a_n components? a_t components change the length (speed) of \vec{v} . a_n components change the direction of \vec{v} .

Intro to **Key Principle #3:** a_n acts toward the center of Curvilinear curvature and may be calc'd from $a_n = v^2/\rho$ **Motion** ρz ā $\overline{a}_{t} = \overline{a}_{2}$ \overline{v}_3 a, $\overline{a}_n = 0$ at an inflection point ρ = Radius of $\rho = \infty$ **Curvature** Normal a_n = Accel, a_n $\rho =$ $a_n \text{ acts } \perp \text{ to } \vec{v},$ ρ = "radius of curvature" toward center of curvature. of a general curve, y = f(x)Changes $\vec{\mathbf{v}}$ direction. where, y' = f'(x) and y'' = f''(x)