Particle Straight Line Kinematics: Ex Prob 2

This is an a = f(t) problem. I call it a "total distance" problem. Variations: v = f(t), s = f(t)....

A particle moves along a straight line with an acceleration of a = (2t-6) m/s². Initially (at t = 0), the position of the particle is $s_0 = 1$ m, and its velocity is $v_0 = 5$ m/s. For the time interval $0 \le t \le 6$ sec, please do the following:

(a) Draw a displacement plot.

Calculate the particle's:

(b) Displacement, Δs .

(c) Average Velocity, v_{avg}.

- (d) Total Distance Traveled, d.
- (e) Average Speed, v_{sp}.

Typical Rectilinear Motion Coordinate System

A particle moves along a straight line with an acceleration of a = (2t-6) m/s². Initially (at t = 0), the position of the particle is $s_0 = 1$ m, and its velocity is $v_0 = 5$ m/s. Time interval $0 \le t \le 6$ s.

Step 1: Integrate the acceleration equation:

a = (2t - 6) m/s².

 $v = t^2 - 6t + 5$ m/s.

 $s = 1/3 t^3 - 3t^2 + 5t + 1$ meters.

Note: If given the s(t) eqn, then differentiate. If given the v(t) eqn, then differentiate for a(t) and integrate for s(t).....

Step 2: Determine the roots of the velocity eqn: (A key step!)

 $0 = v = t^2 - 6t + 5 = (t-5)(t-1)$; Thus v = 0 at t = 1,5 seconds.

What are these v = 0 roots (times)? The particle has at least stopped and is most likely turning around.

Step 1: Integrate the acceleration equation:

$$v = t^2 - 6t + 5 m/s.$$

 $s = 1/3 t^3 - 3t^2 + 5t + 1$ meters.

Step 2: Determine the roots of the velocity eqn: (A key step!)

 $0 = v = t^2 - 6t + 5 = (t-5)(t-1);$ Thus v = 0 at t = 1,5 seconds.

Step 3: Determine the particle's positions at key times. Key times are the start and finish times (t = 0,6 sec) and the turn-around times (t = 1,5 sec). Use the position equation: $s = 1/3 t^3 - 3t^2 + 5t + 1 m$

Step 4: Draw a
Displacement Plot:
$$s(0) = 1 \text{ m} \qquad s(5) = -7.33 \text{ m} \qquad s(6) = -5 \text{ m}$$
$$s(5) = -7.33 \text{ m} \qquad s(6) = 1 \text{ m} \qquad s(1) = 3.33 \text{ m}$$

Step 4: Draw a Displacement Plot:

Step 5: Calculate Δs , d, v_{avg} , v_{sp} .

Displacement:

$$\Delta s = s_{final} - s_{start} = -5 - 1 = -6$$
 meters

Total Distance:

(Add lengths of the line segments of the displacement plot.)

Avg Velocity:

$$v_{avg} = \Delta s / \Delta t = (-6) / (6 \text{ sec}) = -1 \text{ m/s}$$

Avg Speed: