Particle Straight Line Kinematics: Ex Prob 2

This is an $a=f(t)$ problem. I call it a "total distance" problem.
Variations: $v=f(t), s=f(t) \ldots$
A particle moves along a straight line with an acceleration of $a=(2 t-6) \mathrm{m} / \mathrm{s}^{2}$. Initially (at $\mathrm{t}=0$), the position of the particle is $s_{0}=1 \mathrm{~m}$, and its velocity is $\mathrm{v}_{0}=5 \mathrm{~m} / \mathrm{s}$. For the time interval $0 \leq t \leq 6$ sec, please do the following:
(a) Draw a displacement plot.

Calculate the particle's:
(b) Displacement, $\Delta \mathrm{s}$.
(c) Average Velocity, $\mathrm{v}_{\text {avg }}$.
(d) Total Distance Traveled, d.
(e) Average Speed, v_{sp}.

Typical Rectilinear Motion Coordinate System

A particle moves along a straight line with an acceleration of $a=(2 t-6) \mathrm{m} / \mathrm{s}^{2}$. Initially (at $\mathrm{t}=0$), the position of the particle is $s_{0}=1 \mathrm{~m}$, and its velocity is $\mathrm{v}_{0}=5 \mathrm{~m} / \mathrm{s}$. Time interval $0 \leq \mathrm{t} \leq 6 \mathrm{~s}$.

Step 1: Integrate the acceleration equation:

$$
\begin{aligned}
& a=(2 t-6) \mathrm{m} / \mathrm{s}^{2} \\
& v=t^{2}-6 t+5 \mathrm{~m} / \mathrm{s} \\
& s=1 / 3 \mathrm{t}^{3}-3 \mathrm{t}^{2}+5 t+1 \text { meters. }
\end{aligned}
$$

Note: If given the $\mathrm{s}(\mathrm{t})$ eqn, then differentiate. If given the $v(t)$ eqn, then differentiate for $a(t)$ and integrate for $s(t) \ldots .$.

Step 2: Determine the roots of the velocity eqn: (A key step!)

$$
0=v=t^{2}-6 t+5=(t-5)(t-1) ; \text { Thus } v=0 \text { at } t=1,5 \text { seconds. }
$$

What are these $\mathbf{v}=0$ roots (times)? The particle has at least stopped and is most likely turning around.

Step 1: Integrate the acceleration equation:

$$
\begin{aligned}
& a=(2 t-6) \mathrm{m} / \mathrm{s}^{2} \\
& v=t^{2}-6 t+5 \mathrm{~m} / \mathrm{s} \\
& s=1 / 3 t^{3}-3 t^{2}+5 t+1 \text { meters. }
\end{aligned}
$$

Step 2: Determine the roots of the velocity eqn: (A key step!)

$$
0=v=t^{2}-6 t+5=(t-5)(t-1) ; \text { Thus } v=0 \text { at } t=1,5 \text { seconds. }
$$

Step 3: Determine the particle's positions at key times. Key times are the start and finish times ($\mathrm{t}=0,6 \mathrm{sec}$) and the turn-around times ($\mathrm{t}=\mathbf{1 , 5} \mathbf{s e c}$). Use the position equation: $\mathrm{s}=\mathbf{1 / 3} \mathbf{t}^{\mathbf{3}} \mathbf{- 3} \mathbf{t}^{\mathbf{2}} \mathbf{+ 5 t + 1} \mathbf{~ m}$

$$
\begin{array}{ll}
s(0)=1 \mathrm{~m} & s(5)=-7.33 \mathrm{~m} \\
s(1)=3.33 \mathrm{~m} & \mathrm{~s}(6)=-5 \mathrm{~m}
\end{array}
$$

Step 4: Draw a Displacement Plot:

Step 4: Draw a Displacement Plot:

$$
\stackrel{s(5)=-7.33 \mathrm{~m}}{\underset{\mathrm{~s}(6)}{ } \mathrm{s}=-5 \mathrm{~m}} \mathrm{s(1)=1m}=3.33 \mathrm{~m}
$$

Step 5: Calculate $\Delta s, d, v_{\text {avg }}, v_{\text {sp }}$.
Displacement:

$$
\Delta s=s_{\text {final }}-s_{\text {start }}=-5-1=-6 \text { meters }
$$

Total Distance:

$$
\mathrm{d}=2.33+3.33+7.33+2.33=15.33 \mathrm{~m}
$$

(Add lengths of the line segments of the displacement plot.)
Avg Velocity: $\quad v_{\text {avg }}=\Delta s / \Delta t=(-6) /(6 \mathrm{sec})=-1 \mathrm{~m} / \mathrm{s}$

Avg Speed:

$$
v_{\mathrm{sp}}=\mathrm{d} / \Delta t=(15.33) /(6 \mathrm{sec})=2.56 \mathrm{~m} / \mathrm{s}
$$

