Particle Kinematics n-t Coordinates Intro

We've already discussed and used accelerations tangential (a_t) and normal (a_n) to the path of motion. We've calculated a_n from $a_n = v^2/r$ (circular motion) or $a_n = v^2/\rho$ (non-circular).

In this section I'll show you from where the a_n term arises (it arises from the time derivative of the u_t unit vector).

And we'll work some example n-t problems.

n-t coordinates:

Position vector: Not defined

The *direction* of the u_t and u_n unit vectors change, because they are attached to and move with the particle. Their lengths are constant (as unit vectors, their length is 1, of course!).

Think about this $d\hat{u}_t$ vector:

Length = arc length of sweeping a unit vector through $d\theta$. Direction = normal to the \hat{u}_t vector. This direction is given by \hat{u}_n .

> Thus, $d\hat{u}_t = 1 \cdot d\theta \cdot \hat{u}_n$ Dividing by dt gives $\dot{\hat{u}}_t$:

Note that:

 $\frac{\mathbf{d}\theta}{\mathbf{d}\mathbf{t}} = \dot{\theta} = \frac{\mathbf{v}}{\rho}$

ally:
$$\dot{\hat{u}}_{t} = \frac{v}{\rho} \hat{u}_{n}$$

n-t coordinates (continued)

