
Projectile Notes
1.  Definition of a Projectile:  An object that is “projected” or

thrown, which has no capacity for self-propulsion.
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Actual Forces2.  Actual forces on a Projectile:  
Drag, lift due to spin, weight, wind.

3.  Are the forces on a projectile
(other than weight) significant?

In other words, does the ideal
projectile model “fit” or not?

For low speed objects with reasonable mass, e.g. a shot put, or a 
baseball, tennis ball or golf ball tossed softly across a room, the 
ideal projectile model “fits” relatively well.
For high speed objects, e.g. a hit or thrown baseball, a well-hit golf 
ball or tennis ball, etc., drag and other forces are significant and 
our ideal model is not accurate.  For example, a well-hit home run, 
by ideal theory, will travel nearly 750 ft.  In reality it only travels 
around 450 ft—a significant difference!



Light objects, e.g. a ping pong
ball, feather, foam ball, etc., do not
fit the ideal model very well.  A 
relatively small drag or spin force
markedly affects the ball because 
the ball has such low mass.
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Interesting fact: A well-hit golf ball 
travels farther than ideal theory 
predicts because of lift due to spin.

4.  “Ideal” Projectile:  The only force is weight.
(This is what we will cover in this class.)

5.  Ideal Projectile:  If the only force is weight, then the x velocity 
stays constant.  The y velocity changes with time and position.



6.  Ideal Projectile:  If the only force is weight, then…
The x velocity stays constant.
The y velocity changes with time and position.
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7.  Ideal Projectile Equations:  If the only force is weight, then 
the x velocity stays constant (ax = 0).  The y velocity changes with 
time and position (y acceleration ay = -g).

(Ideal) Projectile Equations
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An additional y equation:

x = x  + v0 xt y = y + v t -   gt0y
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SI Units:
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Remember to use the 
correct g for your units!



8.  An ideal projectile trajectory is a parabola.
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A simple numerical example:

x = x  + v0 xt y = y + v t -   gt0y
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y = .75   - .010063x2xThe result is a parabola :

The position eqns
are parametric eqns:

x = f(t) and y = g(t2)

Eliminating t from 
these yields a 
parabola:  y = f(x2)

Position Eqns:

Eliminate t :

We rarely use this fact to solve a problem, 
but you should know it.



9.  For each launch speed, v0, and angle θ there 
is a different parabolic trajectory.
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10.  For a given launch speed, v0, the max range is at θ = 45.  For the 
same v0, launch angles at equal angular increments above and 
below 45 give (equal) ranges shorter than the max range.
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11.  A general projectile motion problem involves seven “pieces”
of information [ x0, y0, θ, xL, yL, and tL ] .

General Projectile Problem

Launch Location:

Landing Location and Time:
Launch Velocity and Angle: (v         ) 0 at    
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General Problem:  Given 5 out of 7 of these “pieces” of info.
Use the two position equations to solve for the remaining two:

Position: x = x  + v0 xt y = y + v t -   gt0y
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where, v  = v   x 0 cos v  = v   0 0y sin

Usually you are given
five of these and asked
to find the remaining
two, usually applying
the two position
equations.


