Projectile Notes

1. Definition of a Projectile: An object that is “projected” or
thrown, which has no capacity for self-propulsion.

2. Actual forces on a Projectile:
Drag, lift due to spin, weight, wind.

3. Are the forces on a projectile
(other than weight) significant?

In other words, does the ideal

projectile model “fit” or not?
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For low speed objects with reasonable mass, e.g. a shot put, or a
baseball, tennis ball or golf ball tossed softly across a room, the
ideal projectile model “fits” relatively well.

For high speed objects, e.g. a hit or thrown baseball, a well-hit golf
ball or tennis ball, etc., drag and other forces are significant and
our ideal model is not accurate. For example, a well-hit home run,
by ideal theory, will travel nearly 750 ft. In reality it only travels
around 450 ft—a significant difference!




Light objects, e.g. a ping pong
ball, feather, foam ball, etc., do not
fit the ideal model very well. A
relatively small drag or spin force
markedly affects the ball because
the ball has such low mass.

Interesting fact: A well-hit golf ball
travels farther than ideal theory

predicts because of lift due to spin.
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4. “ldeal” Projectile: The only force is weight.
(This is what we will cover in this class.)

5. Ideal Projectile: If the only force is weight, then the x velocity
stays constant. The y velocity changes with time and position.




6. Ideal Projectile: If the only force is weight, then...
The x velocity stays constant.
The y velocity changes with time and position.
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7. ldeal Projectile Equations: If the only force is weight, then

the x velocity stays constant (a, = 0). The y velocity changes with
time and position (y acceleration a, = -g).

Remember to use the

correct g for your units!
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8. An ideal projectile trajectory is a parabola.

The position eqns
are parametric eqns:

x = f(t) and y = g(t?)
Voy
Eliminating t from = 30
fps

these yields a

A simple numerical example:
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parabola: y = f(x?) Vx = 40 fps
Position Eqns: X = Xxg + v, t Y = yg * voyt - gt?
x =40t y = 30t -16.1‘t2
Eliminate t : = X o PPt .
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The result is a parabola :

y = .75x - .010063 x2

We rarely use this fact to solve a problem,

but you should know it.



9. For each launch speed, v,, and angle 6 there
is a different parabolic trajectory.
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10. For a given launch speed, v,, the max range is at 6 = 45. For the
same v,, launch angles at equal angular increments above and
below 45 give (equal) ranges shorter than the max range.
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For a given vp, max range at 0 = 45°
(on level ground)

For a given vg, launch angles at equal
angular increments above and below 45°
give (equal) ranges shorter than the
max range.



11. A general projectile motion problem involves seven “pieces”

of information [ Xx,, Vo, 0, X,, V,,and t, ].
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equations. Projectile Problem Variables: (7 pieces of info)

Launch Location: (Xxg, Yg)
Launch Velocity and Angle: (vg at 0)
Landing Location and Time: (X, y.) at time t,

General Problem: Given 5 out of 7 of these “pieces” of info.
Use the two position equations to solve for the remaining two:

mg= . - - 1 2
Position: | x=Xxgp + v,t Yy =yo + Voyt -th
— —
where, Vy = vgcos 0 Voy = Vgsin 0




