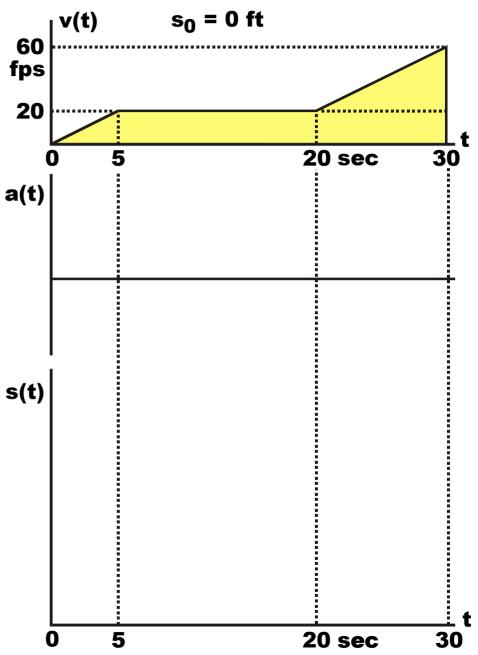
Particle Straight Line (Graphical): Ex Prob 3

Given the v(t) graph at right, draw the a(t) and s(t) graphs.

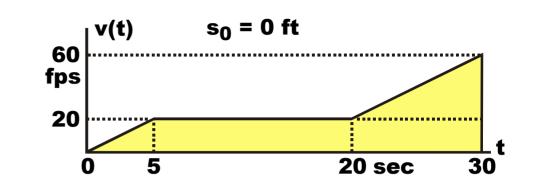
Defining Eqns
(1) $a = \frac{dv}{dt}$
(2) $v = \frac{ds}{dt}$
③ a ds = v dv

To work this problem, you must learn and be comfortable with the graphical interpretation of these defining equations. (See the next page...)



A Graphical Problem

Understand the graphical interpretation of the defining kinematic equations!



Graphical Interpretation of the Defining Eqns

At a point, the acceleration
a = slope of the v(t) curve

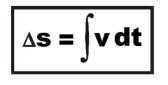


a =

dt

Over an interval, the change in v Δv = area under the a(t) curve

$$v = \frac{ds}{dt}$$



A Graphical Problem

Given the v(t) graph at right, draw the a(t) and s(t) graphs.

At a point,

At a point,

a = slope of v(t) curve

v = slope of s(t) curve

Over an interval,

Over an interval,

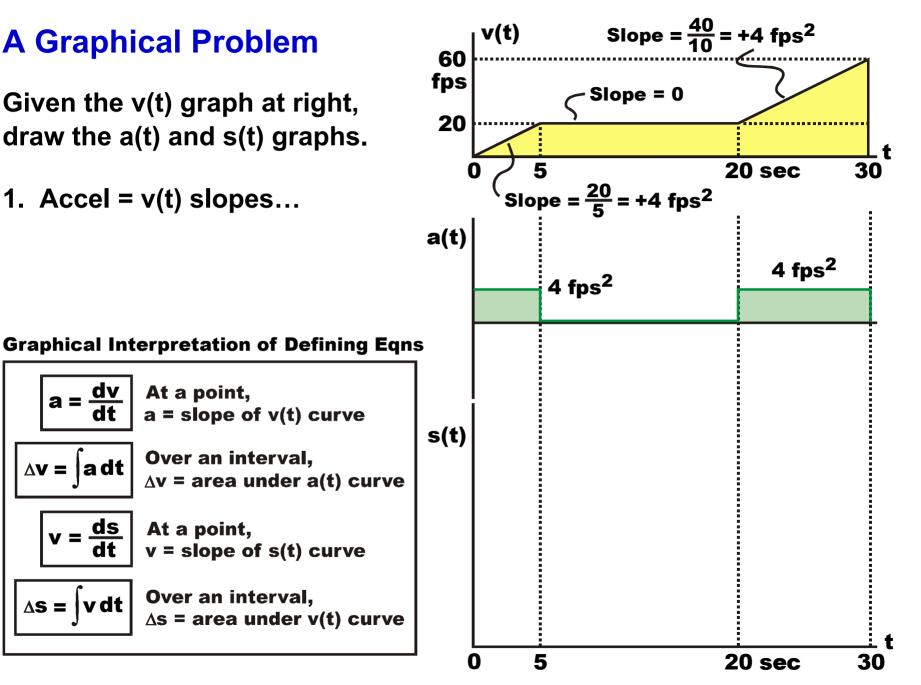
1. Accel = v(t) slopes...

 $a = \frac{dv}{dt}$

 $\Delta \mathbf{v} = |\mathbf{a} \mathbf{d} \mathbf{t}|$

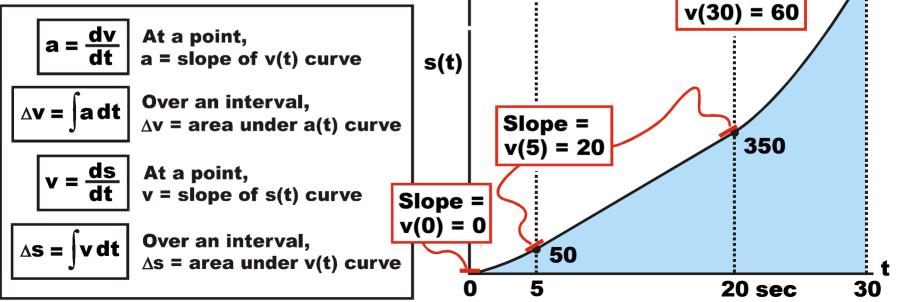
 $v = \frac{ds}{dt}$

 $\Delta s = |v dt|$



- Find and label areas under the v(t) curve...
 These are ∆s over the 0-5,
 and 20-30 time intervals.
- 3. The s(t) curve shapes come from the slopes. At a point, the *slope* of the s(t) curve = v(t) at that point.

Graphical Interpretation of Defining Eqns



v(t)

50

5

60 fps

20

a(t)

0

Area = $\frac{1}{2}(10)(40)$ = 200 ft

200

30

750

ft

200

 $4 \, \mathrm{fps}^2$

20 sec

Slope =

A = (15)(20)

300

Area = $\frac{1}{2}(5)(20) = 50$ ft

 $4 \, \mathrm{fps}^2$