Particle Straight Line (Graphical): Ex Prob 3

Given the $v(t)$ graph at right, draw the $\mathrm{a}(\mathrm{t})$ and $\mathrm{s}(\mathrm{t})$ graphs.

A Graphical Problem

Understand the graphical interpretation of the defining kinematic equations!

Graphical Interpretation of the Defining Eqns

$$
\begin{aligned}
& a=\frac{d v}{d t} \quad \text { At a point, the acceleration } \\
& \text { a = slope of the } v(t) \text { curve } \\
& \Delta v=\int a d t \\
& \text { Over an interval, the change in } v \\
& \Delta v=\text { area under the } a(t) \text { curve } \\
& v=\frac{d s}{d t} \quad \text { At a point, the velocity } \\
& v=\text { slope of the } s(t) \text { curve } \\
& \Delta s=\int v d t \\
& \text { Over an interval, the change in s } \\
& \Delta s=\text { area under the } v(t) \text { curve }
\end{aligned}
$$

A Graphical Problem

Given the $v(t)$ graph at right, draw the $\mathrm{a}(\mathrm{t})$ and $\mathrm{s}(\mathrm{t})$ graphs.

1. Accel $=\mathrm{v}(\mathrm{t})$ slopes...

Graphical Interpretation of Defining Eqns

$$
\begin{array}{|l|l}
a=\frac{d v}{d t} & \text { At a point, } \\
a=\text { slope of } v(t) \text { curve }
\end{array}
$$

$\Delta v=\int a d t$
Over an interval,
$\Delta v=$ area under $a(t)$ curve

$v=\frac{d s}{d t}$	$\begin{array}{l}\text { At a point, } \\ v=\text { slope of } s(t) ~ c u r v e ~\end{array}$

$\Delta s=\int v d t$
Over an interval, $\Delta s=$ area under $v(t)$ curve
2. Find and label areas under the $v(t)$ curve...
These are $\Delta \mathrm{s}$ over the 0-5, 5-20, and 20-30 time intervals.
3. The $\mathbf{s}(\mathrm{t})$ curve shapes come from the slopes. At a point, the slope of the $s(t)$ curve $=v(t)$ at that point.

Graphical Interpretation of Defining Eqns

$$
\begin{array}{r}
\hline a=\frac{d v}{d \mathbf{d}} \\
\Delta v=\int \mathbf{a d t} \\
v=\frac{\mathbf{d s}}{\mathbf{d t}} \\
\Delta s=\int v \mathbf{d t} \\
\hline
\end{array}
$$

At a point, $a=$ slope of $v(t)$ curve

Over an interval, $\Delta v=$ area under a(t) curve

At a point,
$v=$ slope of $s(t)$ curve
Over an interval,
$\Delta s=$ area under $v(t)$ curve

