Particle Straight Line (Integration): Ex Prob 1

A rocket takes off vertically with acceleration $a=(6+0.02 \mathrm{~s}) \mathrm{m} / \mathrm{s}^{2}$. Initially, at $\mathrm{t}=0, \mathrm{v}(0)=0$ and $\mathrm{s}(0)=0$.
Please determine: Speed \mathbf{v} when $\mathbf{s}=\mathbf{2} \mathbf{~ k m}$ above the ground.
Discussion: Acceleration is a function! Of position! So we must match the acceleration function with one of the defining eqns at right.

Our accel function and conditions involve a, s and v, but not time. Which defining eqn best fits these? Correct! Use (3) !

Defining Eqns

(1) $a=\frac{d v}{d t}$
(2) $v=\frac{d s}{d t}$
(3) $\mathbf{a d s}=\mathbf{v d v}$

Defining equation: $\quad a d s=v d v$
Sub in our function: $\quad(6+.02 s) d s=v d v$
Set up integrals and sub in limits from cond's.

$$
\int_{0}^{s}(6+.02 s) d s=\int_{0}^{v} v d v
$$

Set up integrals and sub in limits from cong's.

Integrate....

Algebra...

$$
\int_{0}^{s}(6+.02 s) d s=\int_{0}^{v} v d v
$$

$\left.\left(6 s+.01 s^{2}\right)\right|_{0} ^{s}=\left.\frac{1}{2} v^{2}\right|_{0} ^{v}$
$\left(6 s+.01 s^{2}\right)=\frac{1}{2} v^{2}$

$$
v^{2}=\left(12 s+.02 s^{2}\right)
$$

$$
v=\sqrt{12 s+.02 s^{2}}
$$

$$
\text { At } \mathrm{s}=2 \mathrm{~km}=2000 \mathrm{~m}
$$

At $\mathbf{s}=\mathbf{2 0 0 0} \mathbf{~ m}$, solve for speed, v :

$$
v=322.5 \mathrm{~m} / \mathrm{s}
$$

As a second part of this problem, how would you find the time at which the rocket reaches $\mathrm{s}=2000 \mathrm{~m}$?

You may not realize it, but you now have two equations to use as starting points....plus the defining eqns.

The initial equation: $\quad a=(6+0.02 \mathrm{~s}) \mathrm{m} / \mathrm{s}^{2}$
or the vvs.s equation:

$$
v=\sqrt{12 s+.02 s^{2}}
$$

Defining Eqns
(1) $\mathbf{a}=\frac{\mathbf{d v}}{\mathbf{d t}}$
(2) $v=\frac{d s}{d t}$
(3) $\mathbf{a d s}=\mathbf{v d v}$

So, which one can be combined with a defining equation to get time?

Correct! Use equation (2) plus the vos.s equation....

$$
v=\frac{d s}{d t}=\sqrt{12 s+.02 s^{2}}
$$

Finding the time, \mathbf{t}, at which the rocket reaches $\mathbf{s} \mathbf{=} \mathbf{2 k m}$ altitude:
Defining eqn plus v vs. s eqn: $\quad v=\frac{d s}{d t}=\sqrt{12 s+.02 s^{2}}$

Separate variables:
The integration is difficult. You must use a table or MathCad or other Integrate: solver. I want you to know how to set up a problem like this-even on an
 exam.

Again, the procedure: Match your given equation with one of the three defining equations. Separate variables. Then integrate. Voila!

