Particle Straight Line (Integration): Ex Prob 2

A particle experiences a rapid deceleration: $a = -2v^3 \text{ m/s}^2$. Initially, at t = 0, v(0) = 8 m/s and s(0) = 10 m. Please determine: Speed v and position s at t = 4 sec.

Discussion: Acceleration is a function! Of velocity! So we must match the acceleration function with one of the defining eqns at right.

Our accel function and conditions involve a, v, t and s. Which defining eqn(s) best fit these? Answer: You can use either (1) or (3). Defining Eqns (1) $a = \frac{dv}{dt}$ (2) $v = \frac{ds}{dt}$ (3) a ds = v dv

If you use (3) now, you can integrate to get an equation relating v and s, but you cannot solve for v or s because you do not have a final position (s) or speed (v).

We'll use (1) now. After integration we will have a v vs. t function. At t = 4 sec (given), we can find v.

A particle experiences a rapid deceleration: $a = -2v^3 \text{ m/s}^2$. Initially, at t = 0, v(0) = 8 m/s and s(0) = 10 m. Please determine: Speed v and position s at t = 4 sec.

We'll use (1) now. After integration we will have a v vs. t function....

Separate variables:

Set up integrals and sub in limits from conditions.

$$dt = \frac{dv}{-2v^3} = -\frac{1}{2}v^{-3} dv$$

 $\int_{0}^{1} dt = \int_{0}^{-\frac{1}{2}} v^{-3} dv$

 $a = \frac{dv}{dt} = -2v^3$

Defining Eqns
(1) $a = \frac{dv}{dt}$
(2) $v = \frac{ds}{dt}$
3 a ds = v dv

For the second part of this problem, how would you find the *position, s,* of the particle at t = 4 sec ?

You now have *two* equations to use as starting points....*plus the defining eqns.*

The initial a(v) equation:

$$a = -2v^3 m/s^2$$
.

or the v(t) equation:

$$\mathbf{v}^2 = \left[\frac{1}{4t + \frac{1}{64}}\right]$$

Defining Eqns
(1)
$$a = \frac{dv}{dt}$$

(2) $v = \frac{ds}{dt}$
(3) $a ds = v dv$

So, which equation can be combined with a defining equation to get position?

Answer: You can use either one! The a(v) eqn with (3) (easier) or the v(t) eqn with (2)...(harder). We'll do both Hard way: Use the v(t) equation plus defining equation (2)....

The integration is difficult. You must use a table or MathCad or other solver to solve it. Fortunately, there is an easier way....

See the next page....

Easier approach: Use the a(v) eqn plus defining equation (3)....

Defining equation: a ds = v dvSub in our function: $(-2v^3) ds = v dv$

Separate variables:

ds =
$$\frac{v \, dv}{-2v^3}$$
 = $-\frac{1}{2}v^{-2} \, dv$

Set up integrals and sub in limits from conditions:

$$\int_{10}^{S} ds = \int_{0}^{1} \int_{0}^{1} \sqrt{12} dv$$

.

Integrate:
$$s - 10 = \frac{1}{2}v^{-1} \Big|_{8}^{v} = \frac{1}{2} \Big[\frac{1}{v} - \frac{1}{8} \Big]$$

Re-arrange: $s = 10 + \frac{1}{2} \Big[\frac{1}{v} - \frac{1}{8} \Big]$

Easier approach: Use the a(v) eqn plus defining equation (3)....

$$s = 10 + \frac{1}{2} \left[\frac{1}{v} - \frac{1}{8} \right]$$

At v = .25 m/s (found earlier)...

s =
$$10 + \frac{1}{2} \left[4 - \frac{1}{8} \right] = 10 + \frac{1}{2} \left[3.875 \right]$$

s = 11.94 m
At v = .25 m/s...