Particle Straight Line (Integration): Ex Prob 2

A particle experiences a rapid deceleration: $a=-2 v^{3} \mathrm{~m} / \mathrm{s}^{2}$. Initially, at $\mathrm{t}=0, \mathrm{v}(0)=8 \mathrm{~m} / \mathrm{s}$ and $\mathrm{s}(0)=10 \mathrm{~m}$.
Please determine: Speed v and position s at $t=4$ sec.
Discussion: Acceleration is a function! Of velocity! So we must match the acceleration function with one of the defining eqns at right.

Our accel function and conditions involve $\mathrm{a}, \mathrm{v}, \mathrm{t}$ and s . Which defining eqn(s) best fit these? Answer: You can use either (1) or (3).

Defining Eqns

(1) $a=\frac{d v}{d t}$
(2) $v=\frac{d s}{d t}$
(3) $\mathbf{a d s}=\mathbf{v d v}$

If you use (3) now, you can integrate to get an equation relating v and s, but you cannot solve for v or s because you do not have a final position (s) or speed (v).

We'll use (1) now. After integration we will have av vs. t function. At $\mathbf{t}=4 \mathbf{~ s e c}$ (given), we can find v.

A particle experiences a rapid deceleration: $a=-2 \mathbf{v}^{\mathbf{3}} \mathrm{m} / \mathrm{s}^{\mathbf{2}}$. Initially, at $\mathrm{t}=0, \mathrm{v}(0)=8 \mathrm{~m} / \mathrm{s}$ and $\mathrm{s}(0)=10 \mathrm{~m}$.
Please determine: Speed v and position s at $t=4$ sec.
We'll use (1) now. After integration we will have a v vs. t function....

Defining equation: $\quad a=\frac{d v}{d \mathbf{t}}=-2 \mathbf{v}^{\mathbf{3}}$
Separate variables: $\quad d \mathbf{t}=\frac{d v}{-2 v^{3}}=\frac{-1}{2} v^{-3} d v$

Defining Eqns

(1) $a=\frac{d v}{d t}$
(2) $v=\frac{d s}{d t}$
(3) $\mathbf{a d s}=\mathbf{v d v}$

Set up integrals and sub in limits from conditions.

$$
\int_{0}^{t} d t=\int_{8}^{v}-\frac{1}{2} v^{-3} d v
$$

Set up integrals and sub in limits from conditions.

$$
\begin{aligned}
& \int_{0}^{t} d t=\int_{8}^{-\frac{1}{2}} v^{-3} d v \\
& t=\left.\frac{1}{4} v^{-2}\right|_{8} ^{v}=\frac{1}{4}\left[\frac{1}{v^{2}}-\frac{1}{64}\right]
\end{aligned}
$$

Rearrange to get $v^{2} \ldots .$.

$$
v^{2}=\left[\frac{1}{4 t+\frac{1}{64}}\right]
$$

$$
\text { At } t=4 \text { sec... } v^{2}=\left[\frac{1}{16+\frac{1}{64}}\right]
$$

t	v
0	8
1	.5
4	.25

$$
v \approx \frac{1}{4}
$$

$$
v=0.25 \mathrm{~m} / \mathrm{s}
$$

For the second part of this problem, how would you find the position, s, of the particle at $\mathrm{t}=4 \mathrm{sec}$?

You now have two equations to use as starting points....plus the defining eqns.

The initial $a(v)$ equation:

$$
\mathrm{a}=-2 \mathrm{v}^{3} \mathrm{~m} / \mathrm{s}^{2}
$$

Defining Eqns
(1) $a=\frac{d v}{d \mathbf{t}}$
or the $v(t)$ equation:

$$
v^{2}=\left[\frac{1}{4 t+\frac{1}{64}}\right]
$$

$$
\text { (2) } v=\frac{d s}{d t}
$$

$$
\text { (3) } \mathbf{a d s}=\mathbf{v d v}
$$

So, which equation can be combined with a defining equation to get position?

Answer: You can use either one! The a(v) eqn with (3) (easier) or the $\mathrm{v}(\mathrm{t})$ eqn with (2)...(harder). We'll do both

Hard way: Use the $v(t)$ equation plus defining equation (2)....
We found this $v(t)$ equation.... $\quad v^{2}=\left[\frac{1}{4 t+\frac{1}{64}}\right]$

Solve for v and set equal to ds/dt.....

$$
v^{2}=\left[\frac{1}{4 t+\frac{1}{64}}\right]
$$

quar ot col

$$
v=\left[\frac{1}{4 t+\frac{1}{64}}\right]^{\frac{1}{2}}=\frac{d s}{d t}
$$

Separate variables and set up the integral....

$$
\int_{0}^{10} d s=\int_{0}^{t}\left[4 t+\frac{1}{64}\right]^{-.5} d t
$$

The integration is difficult. You must use a table or MathCad or other solver to solve it. Fortunately, there is an easier way.... See the next page....

Easier approach: Use the $a(v)$ eqn plus defining equation (3)....
Defining equation: $a d s=v d v$

Sub in our function: $\left(-2 v^{3}\right) d s=v d v$

Separate variables:

$$
d s=\frac{v d v}{-2 v^{3}}=\frac{-1}{2} v^{-2} d v
$$

Set up integrals and sub in limits from conditions:

$$
\int_{10}^{s} d s=\int_{8}^{v}-\frac{1}{2} v^{-2} d v
$$

Integrate:

$$
s-10=\left.\frac{1}{2} v^{-1}\right|_{8} ^{v}=\frac{1}{2}\left[\frac{1}{v}-\frac{1}{8}\right]
$$

Re-arrange:

$$
s=10+\frac{1}{2}\left[\frac{1}{v}-\frac{1}{8}\right]
$$

Easier approach: Use the $a(v)$ eqn plus defining equation (3)....

$$
s=10+\frac{1}{2}\left[\frac{1}{v}-\frac{1}{8}\right]
$$

At v $=\mathbf{.} \mathbf{2 5} \mathbf{~ m} / \mathrm{s}$ (found earlier)...

$$
\begin{gathered}
s=10+\frac{1}{2}\left[4-\frac{1}{8}\right]=10+\frac{1}{2}[3.875] \\
s=11.94 \mathrm{~m} \\
\text { At } v=.25 \mathrm{~m} / \mathrm{s} . .
\end{gathered}
$$

