Rigid Body Planar Motion

General Angular Motion

General Angular Motion

		Defini	ng Kinema	atic Equations	
General Angular Motion: Definitions		Along a line:		Angular:	
θ = angular displacement $\omega = \frac{d\theta}{dt} = \dot{\theta}$ = angular veloc	, radians ity, rad/sec	1 a	= $\frac{dv}{dt}$	(1) $\alpha = \frac{d\omega}{dt}$	
$\alpha = \frac{d\omega}{dt} = \dot{\omega} = \text{ angular acceleration, rad/sec}^2$		2 v = <u>dt</u> 3 a ds = v dv		$\begin{array}{ccc} 2 & \boldsymbol{\omega} = \frac{\mathbf{d} \boldsymbol{\omega}}{\mathbf{d} \mathbf{t}} \\ 3 & \boldsymbol{\alpha} \mathbf{d} \boldsymbol{\theta} = \boldsymbol{\omega} \mathbf{d} \boldsymbol{\omega} \end{array}$	
Constant Accel Kine Motion along a path:	ematic Equations Angular Motion:		All of apply t	these eqns	
a = constant eqns α = constant eqns		angular motion,			

(1) $\omega = \omega_0 + \alpha t$ (1) $v = v_0 + at$ (2) $s = s_0 + v_0 t + \frac{1}{2} a t^2$ (2) $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$ (3) $v^2 = v_0^2 + 2a(s - s_0)$ (3) $\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$ not just to fixed axis rotation.

But, we usually only use these for bodies undergoing fixed axis rotation.

General Angular Motion: Types of Problems

Fixed Axis Rotation

Velocity and accelerations of a POINT on a rotating rigid body.

Fixed Axis Rotation (Gears Touching)

Use the ratio of the radii of adjacent gears to transfer ω's, α's, and θ's from gear to gear....

• Use your intuition about whether the next gear is turning faster or slower.

