Rigid Body Planar Motion

- General Angular Motion

General Angular Motion: Definitions
$\theta=$ angular displacement, radians
$\omega=\frac{\mathbf{d} \theta}{\mathbf{d t}}=\dot{\theta}=$ angular velocity, rad/sec
$\alpha=\frac{\mathbf{d} \omega}{\mathbf{d t}}=\dot{\omega}=$ angular acceleration, rad/sec ${ }^{2}$

- General Angular Motion
General Angular Motion: Definitions
$\theta=\mathbf{a n g u l a r}$ displacement, radians
$\omega=\frac{\mathbf{d} \theta}{\mathbf{d t}}=\dot{\theta}=$ angular velocity, rad $/ \mathbf{s e c}$
$\alpha=\frac{\mathbf{d} \omega}{\mathbf{d t}}=\dot{\omega}=$ angular acceleration, $\mathbf{r a d} / \mathbf{s e c}^{2}$

Defining Kinematic Equations

Along a line:	Angular:	
(1) $\mathbf{a}=\frac{\mathbf{d v}}{\mathbf{d t}}$	(1) $\alpha=\frac{\mathbf{d} \omega}{\mathbf{d t}}$	
(2) $\quad \mathbf{v}=\frac{\mathbf{d s}}{\mathbf{d t}}$	(2) $\omega=\frac{\mathbf{d} \theta}{\mathbf{d} \mathbf{t}}$	
(3) $\mathbf{a d s}=\mathbf{v d v}$	(3) $\alpha \mathbf{d} \theta=\omega \mathbf{d} \omega$	

Constant Accel Kinematic Equations

Motion along a path:

 a = constant eqns
Angular Motion:

 $\alpha=$ constant eqns(1) $\omega=\omega_{0}+\alpha t$
(2) $\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$
(3) $\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)$

All of these eqns apply to ANY angular motion, not just to fixed axis rotation.

(1) v	(1) $\omega=\omega_{0}+\alpha t$
(2) $\mathrm{s}=\mathrm{s}_{\mathbf{0}}+\mathrm{v}_{\mathbf{0}} \mathrm{t}+\frac{1}{2} a t^{\mathbf{2}}$	(2) $\theta=\theta_{0}+\omega_{0} \mathbf{t}+\frac{1}{2} \alpha \mathbf{t}^{2}$
(3) $\mathrm{v}^{\mathbf{2}}=\mathrm{v}_{0}^{2}+2 \mathrm{a}\left(\mathrm{s}-\mathrm{s}_{0}\right)$	(3) $\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)$

But, we usually only use these for bodies undergoing fixed axis rotation.

General Angular Motion: Types of Problems

Cases:

1. $\alpha=$ constant

Angular Motion:

 $\alpha=$ constant eqns(1) $\omega=\omega_{0}+\alpha t$
(2) $\theta=\theta_{0}+\omega_{0} \mathbf{t}+\frac{1}{2} \alpha \mathbf{t}^{2}$
(3) $\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)$
2. $\alpha=f(t)$
3. $\alpha=f(\theta)$
4. $\alpha=f(\omega)$
5. $\omega=f(\theta)$
6. etc.

> Angular Motion
> Defining Kinematic Equations
> (1) $\alpha=\frac{\mathbf{d} \omega}{\mathbf{d t}}$
> (2) $\omega=\frac{\mathbf{d} \theta}{\mathbf{d t}}$
> (3) $\alpha \mathbf{d} \theta=\omega \mathbf{d} \omega$

Fixed Axis Rotation

- Velocity and accelerations of a POINT on a rotating rigid body.

Fixed Axis Rotation
Equations for $\mathbf{v}_{\mathbf{P}}, \mathbf{a}_{\mathbf{P}_{\mathbf{t}}}, \mathbf{a}_{\mathbf{P n}}$ for a point \mathbf{P}

Disk rotates around a fixed axis at 0 .

Fixed Axis Rotation (Gears Touching)

- Use the ratio of the radii of adjacent gears to transfer ω 's, α 's, and θ^{\prime} 's from gear to gear....
- Use your intuition about whether the next gear is turning faster or slower.

Two gears touching at P, with no slip.
At this contact point, the two disks share the same: $\mathbf{v}_{\mathbf{P}}, \mathbf{a}_{\mathbf{P t}_{\mathbf{t}}}, \mathbf{s}$

Key idea here:
Use the ratio of the gear radii
r_{A} to transfer $\overline{\mathbf{r}_{\mathrm{B}}} \omega$'s, α 's from gear to gear.

