
Rigid Body F=ma Equations: In the one or two classes prior to 
this one, we gave the following scalar equations of motion 
for planar rigid body F=ma problems:

Rigid Body F=ma:  Fixed Axis Rotation

F  = ax xG

F  = ay yG

M  = G GI

A “kinetic” moment equation,
useful for some problems, is:

M  = P ( )MK P

For fixed axis rotation problems, one additional moment 
equation is quite useful:  (only for fixed axis rotation!)

M  = PIN PINI

This is not a new equation;  it is basically the kinetic 
moment equation applied to fixed axis problems.



Two types of Problems:   (1) G at pin, or  (2)  G not at pin.

In the previous section we discussed translation problems, 
which had some aG of the mass center, but their angular 
acceleration α was zero because they did not rotate.

This section discusses fixed axis rotation problems which all 
have an angular acceleration, α, but may or may not have an 
aG, depending on the location of their mass center G.

There are two classes of fixed axis problems, depending on 
the location of the mass center, G:

(1)  If G is at the pin, G doesn’t move, and aG is zero.

(2)  If G is not at the pin, G moves in a circle about the pin,
and is thus resolved into aGt and aGn components.



Two types of Problems:  (a)  G at pin, or  (b)  G not at pin.

There are two classes of fixed axis problems, depending on 
the location of the mass center, G:
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If G is at the (fixed)
pin at A, then aG = 0.
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Where does the  ΣMpin = Ipinα equation come from?

Consider a basic fixed axis problem, a slender bar, with G not 
at the pin.  Find α and aG.
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Write a Kinetic Moment equation about the pin at A:
(You could sum about G if you wish....)

M  = A ( )MK A ;     mg (r cos   ) = (m   r)(r) +  IG



M  = PIN PINI

Only use this for Fixed Axis Rotation, because
we used   a  =   r   kinematics to obtain it.t

Write a Kinetic Moment equation about the pin at A:
(You could sum about G if you wish....)

M  = A ( )MK A ;     mg (r cos   ) = (m   r)(r) +  IG

IG
2 + mr =Do you recognize this?

This is the Parallel Axis Theorem!
IPIN =

IG
2 + mr =IPIN

This is the general form of the equation:

   a  =   r  t for FA
rotation
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(Sum in either n-t or x-y)

F  = ax x G ; A  = (m   r) cos    + (m   r) sin   x
2

F  = ay y G ; A  - mg = +(m   r) sin    - (m   r) cos   y
2

To solve for Ax, Ay and     , write these equations:

For a slender rod:

;     mg (r cos   ) =  M  = PIN IPIN IPIN

 =IPIN
1
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Summary of the Equations of Motion for this Problem



To review, this is not a radically new equation.  
It comes from combining:  (a)  Kinetic moment equation, 
(b)  at = αr, and   (c)  Parallel axis theorem.

Finally, we applied this to a slender bar, but it applies to 
any shaped body rotating about a pin with its center 
of mass G not at the pin.  

If you have a composite body made up of several mass 
shapes rotating about the pin, you may use this equation 
as well, where Ipin is the sum of the Ipin’s for all of the 
mass centers, using the parallel axis theorem:

For a composite body:   Ipin = Σ(IG + md2)

M  = PIN PINI



Unbalanced rotating equipment is a common, simple example 
of fixed axis rotation with the mass center not exactly at the 
pin.  Here are some examples:
1.  Washing machine: When washing clothes, have your wet 
clothes shifted to one side of the drum?  On the spin cycle, 
what happens?  The entire machine shakes dramatically, 
doesn’t it?  Why?  The composite mass center of the drum 
plus the clothes has shifted well away from the axis of 
rotation.
2.  Automobile tires: Are you aware that tires—even new 
ones—are not perfectly balanced?  When you buy new tires, 
after they are mounted on your rims, the mechanic balances 
the rim-tire assembly on a special balancing machine.  The 
machine spins the tires (measuring dynamic loads) and 
computes the specific locations on the rim to clip on lead 
weights of various sizes to balance the tire.

Examples where G is not at the pin.



Examples where G may or may not be at the pin.

3.  Automobile crankshafts: Special care is taken to use counter 
weights to balance these.
4.  Fishing reels: Next time you are in the fishing section at a 
sporting good store, try out a spinning reel (the kind with an 
open view of the fishing line).  The spool, bale and handle rotate 
on different axes, but together, they are balanced amazingly well.
5.  In-class example: Create a 6-10 inch diameter wooden disk 
(or an 8 inch long stick) with a centered ¼ inch hole and two off-
center holes.  Place a ¼ inch bolt, tightened with a nut and 
washers, in the centered hole.  Chuck this in a cordless drill and 
spin the assembly.  The drill should not vibrate very much.  Place 
a bolt and nut in one of the other holes, tighten it, and spin the 
drill again.  Try various speeds.  The drill vibrates in your hand.  
What you are feeling is the rotating force at the drill’s chuck 
needed to keep the mass center G moving in the circle.



A Disk in a Horizontal Plane:  G not at the pin.
On rotating equipment, an off-centered G creates a rotating 
(normal) force component at the pin, with An = m(ω2r).
Example:  A motor drives an unbalanced disk in a HORIZ plane 
at a constant angular velocity, ω.  Find the pin reaction at A.
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Horizontal Plane:  

If the disk lies in a horizontal plane, the weight
mg is perpendicular to the disk.  The only pin 
reaction in the plane at A is simply the rotating
normal reaction A  equal to m(   r).  2
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A Disk in a Vertical Plane:  G not at the pin.
On rotating equipment, an off-centered G creates a rotating 
(normal) force component at the pin, with An = m(ω2r).
Example:  A motor drives an unbalanced disk in a VERTICAL plane 
at a constant angular velocity, ω.  Find the pin reaction at A.

Vertical Plane:  

If the disk lies in a vertical plane, the pin reaction
at A consists of a vertical component A  = mg
plus a rotating normal reaction A  equal to m(   r).  
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A machine designed to “bounce”.
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Assembly pivots
at a pin at B.

End C of the machine
is supported by a spring.

This machine is designed to “bounce” on the spring
at C due to the rotation of the unbalanced wheel.  
Vibration like this is accompanied by pulsing force 
reactions everywhere--at B, C, A, etc.  In time, a machine
like this will suffer breakdowns due to fatigue.




