Rigid Body F=ma Fixed Axis Rotation: Example 3
A 64.4 lb rectangular plate is suspended by a pin and a cord. At the instant the cord is cut, please determine: (a) Pin reactions at A;
(b) The plate's angular acceleration, α.

64.4 lb Rectangular plate, released from rest.

Draw a Free Body Diagram and a Kinetic Diagram

Calculate I_{G} for the plate: $\left[I_{G}=(1 / 12) m\left(a^{2}+b^{2}\right)\right]$

$$
I_{G}=(1 / 12)(2)\left(4^{2}+3^{2}\right)=4.17 \text { slug }-\mathrm{ft}^{2}
$$

Calculate $I_{\text {pin }}$ from the parallel axis theorem:

$$
I_{\text {pin }}=I_{G}+m d^{2}=4.17+(2)\left(2.5^{2}\right)=16.67 \text { slug- } \mathrm{ft}^{2}
$$

Write equations of motion: Sum moments about the pin:

$$
\begin{gathered}
\Sigma M_{\mathrm{pin}}=I_{\mathrm{pin}} \alpha ;(64.4)(2 \mathrm{ft})=I_{\mathrm{pin}} \alpha=16.67 \alpha \\
\alpha=7.73 \mathrm{rad} / \mathrm{sec}^{2}
\end{gathered}
$$

from kinematics: $a_{t}=r \alpha=2.5(7.73), a_{t}=19.3 \mathrm{fps}^{2}$
Note: Don't be alarmed about the fact that we drew $I_{G} \alpha$ on the KD and then used $I_{\text {pin }}$ in the moment equation.

Remember the $I_{\text {pin }} \alpha$ term on the RHS is the equivalent of a kinetic moment of $I_{G} \alpha$ plus ma $_{t}(r)$ about the pin. Using $I_{\text {pin }}$ simplifies the equation slightly.

Use force summations to find the pin reactions at A:
$\Sigma F_{y}=m a_{y} ; A_{y}-64.4=-2(19.3)(4 / 5)$
$A_{y}=64.4-30.9$
$A_{y}=33.5 \mathrm{lb}$
$\Sigma F_{x}=m a_{x} ; A_{x}=2(19.3)(3 / 5)$

$$
A_{x}=23.2 \mathrm{lb}
$$

As noted earlier, you may choose to express the pin reactions at A in normal and tangential components, too. Then sum forces in n and t to compute A_{n} and A_{t}. (The mg term would need to be resolved into n and t coordinates, though.)

If you choose to sum moments about the pin using a kinetic moment, (instead of using $I_{\text {pin }} \alpha$) you get:

$$
\begin{gathered}
\Sigma M_{\text {pin }}=I_{G} \alpha+m a_{t}(r) ;(64.4)(2 \mathrm{ft})=4.17 \alpha+2 a_{t}(2.5) \\
128.8=4.17 \alpha+5 a_{t} ; \text { but here sub in } a_{t}=2.5 \alpha \\
128.8=4.17 \alpha+5(2.5 \alpha)=16.67 \alpha \\
\alpha=7.73 \mathrm{rad} / \mathrm{sec}^{2}
\end{gathered}
$$

etc.
If you choose to sum moments about G, you introduce the pin reactions into the moment equation:

$$
\begin{equation*}
\Sigma M_{G}=I_{G} \alpha ; A_{V}(2)-A_{x}(1.5)=4.17 \alpha \tag{1}
\end{equation*}
$$

See the next page for the remainder of this approach....

Write the $F=$ ma equations:

$$
\begin{align*}
& \Sigma F_{y}=m a_{y} ; A_{y}-64.4=-2\left(a_{t}\right)(4 / 5) \tag{2}\\
& \Sigma F_{x}=m a_{x} ; A_{x}=2\left(a_{t}\right)(3 / 5) \tag{3}
\end{align*}
$$

You need a fourth equation: $a_{t}=2.5 \alpha$.
Solve these four equations for the four unknowns.

$$
\left[\begin{array}{cccc}
2 & -1.5 & 0 & -4.17 \tag{4}\\
1 & 0 & 1.6 & 0 \\
0 & 1 & -1.2 & 0 \\
0 & 0 & 1 & -2.5
\end{array}\right]\left[\begin{array}{c}
A_{y} \\
A_{x} \\
a_{t} \\
\alpha
\end{array}\right]=\left[\begin{array}{c}
0 \\
64.4 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{array}{|l|}
A_{\mathbf{y}}=33.5 \mathrm{lb} \\
A_{\mathbf{x}}=23.2 \mathrm{lb} \\
\mathbf{a}_{\mathbf{t}}=19.3 \mathrm{fps}^{2} \\
\alpha=7.73 \mathrm{r} / \mathrm{s}^{2} \\
\hline
\end{array}
$$

These agree with our earlier results, but you can see that summing moments about \mathbf{G} involves more solution effort. That's why we recommend summing moments about the pin.

