Rigid Body F=ma Fixed Axis Rotation: Example 3

A 64.4 lb rectangular plate is suspended by a pin and a cord. At the instant the cord is cut, please determine: (a) Pin reactions at A; (b) The plate's angular acceleration, α .

Draw a Free Body Diagram and a Kinetic Diagram

Calculate I_G for the plate: $[I_G = (1/12)m(a^2 + b^2)]$

 $I_{G} = (1/12)(2)(4^{2}+3^{2}) = 4.17 \text{ slug-ft}^{2}$

Calculate I_{pin} from the parallel axis theorem:

 $I_{pin} = I_G + md^2 = 4.17 + (2)(2.5^2) = 16.67 slug-ft^2$

Write equations of motion: Sum moments about the pin:

$$\Sigma M_{pin} = I_{pin} \alpha$$
; (64.4)(2 ft) = $I_{pin} \alpha$ = 16.67 α

$$\alpha$$
 = 7.73 rad/sec²

from kinematics: $a_t = r\alpha = 2.5(7.73)$, $a_t = 19.3$ fps²

Note: Don't be alarmed about the fact that we drew $I_{g}\alpha$ on the KD and then used I_{pin} in the moment equation.

Remember the $I_{pin}\alpha$ term on the RHS is the equivalent of a kinetic moment of $I_{g}\alpha$ plus $ma_t(r)$ about the pin. Using I_{pin} simplifies the equation slightly.

Use force summations to find the pin reactions at A:

$$\Sigma F_y = ma_y$$
; $A_y - 64.4 = -2(19.3)(4/5)$

$$A_v = 64.4 - 30.9$$

$$\Sigma F_x = ma_x; A_x = 2(19.3)(3/5)$$

$$A_{x} = 23.2 \text{ lb}$$

As noted earlier, you may choose to express the pin reactions at A in normal and tangential components, too. Then sum forces in n and t to compute A_n and A_t . (The mg term would need to be resolved into n and t coordinates, though.)

If you choose to sum moments about the pin using a kinetic moment, (instead of using $I_{pin}\alpha$) you get:

$$\Sigma M_{pin} = I_{g} \alpha + ma_{t}(r);$$
 (64.4)(2 ft) = 4.17 α + 2a_t(2.5)

128.8 = 4.17 α + 5 a_t ; but here sub in $a_t = 2.5\alpha$

$$128.8 = 4.17\alpha + 5(2.5\alpha) = 16.67\alpha$$

$$\alpha$$
 = 7.73 rad/sec²

etc.

If you choose to sum moments about G, you introduce the pin reactions into the moment equation:

$$\Sigma M_{g} = I_{g} \alpha$$
; $A_{v}(2) - A_{x}(1.5) = 4.17 \alpha$ (1)

See the next page for the remainder of this approach....

Write the F = ma equations:

 $\Sigma F_y = ma_y$; $A_y - 64.4 = -2(a_t)(4/5)$ (2) (3)

(4)

 $\Sigma F_x = ma_x$; $A_x = 2(a_t)(3/5)$

You need a fourth equation: $a_t = 2.5\alpha$.

Solve these	[2	-1-5	0	-4.17		Γο	1	A _v = 33.5 lb
four equations			1.6		J			l y l
for the four		-		-	Ax	=	"	$A_{x} = 23.2 \text{ lb}$
unknowns.		1	-1.2		a _t			a _t = 19.3 fps ²
diratio with 3.	0	0	1	-2.5	α	0		$\alpha = 7.73 \text{ r/s}^2$

These agree with our earlier results, but you can see that summing moments about G involves more solution effort. That's why we recommend summing moments about the pin.