Rigid Body F=ma Intro (Gen Plane B): Example 1
(Last class we worked a drum and weight connected by a cable problem, except the cable attached to the center of the drum. In this problem the cable is not at the center and we must use a relative acceleration equation for kinematics.
 massless cable which wraps around an inner hub on A and around massless, frictionless pulleys. If the system is released from rest in the position shown, please determine the tension in the cable and the component accelerations.

Draw the FBD and KD for the drum and the mass:

Write the Equations of Motion:

Drum A:
FBD

Equations of Motion (Drum A):

$$
\begin{align*}
& +\uparrow \sum F_{y}=\text { magy }_{\text {G }} ; \quad N=196.2 \mathrm{~N} \\
& \xrightarrow{+} \Sigma F_{X}=\text { ma }_{G x} ; \quad T-F=20 a_{A} \tag{1}\\
& { }^{+}{ }^{+} M_{G}=I_{G} \alpha ; \quad T(.1)+F(.2)=.45 \alpha \tag{2}
\end{align*}
$$

Equation of Motion (Mass C):

$$
\begin{equation*}
+\downarrow \Sigma F_{y}=m a_{G y} ; \quad 98.1-2 T=10 a_{c} \tag{3}
\end{equation*}
$$

Count the unknowns in these THREE equations. How many do you get?

I count FIVE!
We need TWO more equations.

We need two additional equations...Use kinematics:

Assume no slip: a = αr

Note: This "no slip" assumption must be validated with your answers.

But a_{B} is not one of our current unknowns. How can we relate $\mathbf{a}_{\mathbf{c}}$ to \mathbf{a}_{A} ? Use the relative accel equation.

Relative Accel Equation for Drum A:

Set up the matrix and solve the system of eqns:

$$
\begin{aligned}
& \text { (1) } T-F=20 a_{A} \\
& \text { (2) } T(.1)+F(.2)=.45 \alpha \\
& \text { (3) } 98.1-2 T=10 a_{C} \\
& \text { (4) } a_{A}=.2 \alpha \\
& \text { (5) } a_{C}=.15 \alpha
\end{aligned}
$$

$\left.\quad \begin{array}{ccccc}T & F & a_{A} & a_{C} & \alpha \\ \text { (1) } \\ \text { (2) } \\ \text { (3) } \\ \text { (4) } \\ \text { (5) } & -1 & -20 & 0 & 0 \\ -1 & -2 & 0 & 0 & -.45 \\ 2 & 0 & 0 & 10 & 0 \\ 0 & 0 & 1 & 0 & -.2 \\ 0 & 0 & 0 & 1 & -.15\end{array}\right]\left[\begin{array}{c}T \\ F \\ a_{A} \\ a_{C} \\ \alpha\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ 98.1 \\ 0 \\ 0\end{array}\right]$

Solve with calculator:

$$
\begin{aligned}
T & =41.6 \mathrm{~N} \\
\mathbf{F} & =1.66 \mathrm{~N} \longleftarrow \\
a_{A} & =2.0 \mathrm{~m} / \mathrm{s}^{2} \longrightarrow \\
a_{C} & =1.50 \mathrm{~m} / \mathrm{s}^{2} \downarrow \\
\alpha & =9.98 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

One last step: Check the no slip assumption... $(F / N)_{\text {caL }}<\mu=.2$? Clearly true because F is small.

