Mass Moment of Inertia, I_G

- I_G is the "mass moment of inertia" for a body about an axis passing through the body's mass center, G.
- I_G is defined as: $I_G = \int r^2 dm$ Units: kg-m² or slug-ft²

I_G is used for several kinds of rigid body rotation problems, including:

- (a) F=ma analysis moment equation ($\Sigma M_{g} = I_{g}\alpha$).
- (b) Rotational kinetic energy ($T = \frac{1}{2} I_{G} \omega^{2}$)
- (c) Angular momentum ($H_{g} = I_{g}\omega$)

I_G is the resistance of the body to angular acceleration. That is, for a given net moment or torque on a body, the larger a body's I_G, the lower will be its angular acceleration, α .

 ${\bf I}_{\rm G}$ also affects a body's angular momentum, and how a body stores kinetic energy in rotation.

Mass Moment of Inertia, I_G (cont'd)

I_G for a body depends on the body's mass and the location of the mass.

The greater the distance the mass is from the axis of rotation, the larger I_{G} will be.

For example, flywheels have a heavy outer flange that locates as much mass as possible at a greater distance from the hub.

If I is needed about an axis other than G, it may be calculated from the "parallel axis theorem."

Parallel Axis Theorem (PAT) for I about axes other than G.

Parallel Axis Theorem

Х

If you know I_G about the G axis, and need I_P about another axis (parallel to the G axis) use the "parallel axis theorem."

 $I_G = I$ about center of mass, G

 $I_P = I$ about an axis passing through P (parallel to the G axis)

$$I_P = I_G + md^2$$

md² = "transfer term"; m = mass of body, d = distance between axes

Important: This equation cannot be used between *any* two parallel axes. One axis must be G, about the center of mass.

I_G's for Common Shapes

Radius of Gyration, k_G, for Complex Shapes

Some problems with a fairly complex shape, such as a drum or multi-flanged pulley, will give the body's mass m and a radius of gyration, k_g, that you use to calculate I_g.

If given these, calculate I_G from: $I_G = mk_G^2$

As illustrated below, using k_g in this way is effectively modeling the complex shape as a thin ring.

