Mass Moment of Inertia, \mathbf{I}_{G}
I_{G} is the "mass moment of inertia" for a body about an axis passing through the body's mass center, \mathbf{G}.
I_{G} is defined as: $I_{G}=\int r^{2} d m \quad$ Units: $k g-m^{2}$ or slug- ft^{2}
I_{G} is used for several kinds of rigid body rotation problems, including:
(a) $F=m a$ analysis moment equation ($\Sigma M_{G}=I_{G} \alpha$).
(b) Rotational kinetic energy ($T=1 / 2 I_{G} \omega^{2}$)
(c) Angular momentum ($H_{G}=I_{G} \omega$)
I_{G} is the resistance of the body to angular acceleration. That is, for a given net moment or torque on a body, the larger a body's I_{G}, the lower will be its angular acceleration, α.
I_{G} also affects a body's angular momentum, and how a body stores kinetic energy in rotation.

Mass Moment of Inertia, \mathbf{I}_{G} (cont'd)
I_{G} for a body depends on the body's mass and the location of the mass.

The greater the distance the mass is from the axis of rotation, the larger I_{G} will be.

For example, flywheels have a heavy outer flange that locates as much mass as possible at a greater distance from the hub.

If I is needed about an axis other than G, it may be calculated from the "parallel axis theorem."

Parallel Axis Theorem (PAT) for I about axes other than G.

$$
I_{P}=I_{G}+m d^{2}
$$

Parallel Axis Theorem

If you know I_{G} about the G axis, and need I_{P} about another axis (parallel to the G axis) use the "parallel axis theorem."
$I_{G}=I$ about center of mass, \mathbf{G}
$I_{P}=I$ about an axis passing through P (parallel to the G axis)
md $^{2}=$ "transfer term"; m = mass of body, d = distance between axes

Important: This equation cannot be used between any two parallel axes. One axis must be G, about the center of mass.

\mathbf{I}_{G} 's for Common Shapes

Radius of Gyration, $\mathbf{k}_{\mathbf{G}}$ for Complex Shapes

Some problems with a fairly complex shape, such as a drum or multi-flanged pulley, will give the body's mass m and a radius of gyration, k_{G}, that you use to calculate I_{G}.

If given these, calculate I_{G} from:

$$
I_{G}=m k_{G}{ }^{2}
$$

As illustrated below, using k_{G} in this way is effectively modeling the complex shape as a thin ring.

Radius of Gyration, $\mathbf{k}_{\mathbf{G}}$

Some problems involving a complex shape with mass, m, and an outer radius, R, will give a "radius of gyration", k_{G}, that can be used to determine I_{G} for that shape. The equation, $I_{G}=\mathbf{m k}_{G}^{\mathbf{2}}$, indicates that the complex shape is being modeled dynamically by a thin ring with mass, m, and a radius, \mathbf{k}_{G}.

