Work-Energy (WE) Equation for Particles

Important: The WE equation is not a radically new concept.
It is an integrated form of $F=m a$.
Work of a Force: Work = (Force)(Distance)
Units: ft-lb or N-m = Joule
Work is a dot product:

Work is a dot product

$$
d U=\vec{F} \cdot d \vec{r}
$$

of force times displacement
Properties of a dot product:
Magnitude: $\mathbf{d U}=(\mathbf{F} \cos \theta)(\mathbf{d r})$
Where, $F \cos \theta$ is the component of F acting in the direction of motion.
The component of $\vec{F} \perp$ to $\overline{\mathrm{dr}}$ does no work.

Derivation of the Work-Energy Equation

Work definition:
In scalar form, with F acting along ds:

$$
d U=\vec{F} \cdot d \overrightarrow{\mathbf{r}}
$$

Two other ways to write Work-Energy Equation:

Let T_{1} and T_{2} represent initial and final KE

$$
\mathrm{T}_{1}+\sum \mathbf{U}_{1-2}=\mathbf{T}_{2}
$$

W-E equation for multiple particles with KE:

$$
\Sigma \mathbf{T}_{1}+\Sigma \mathbf{U}_{1-2}=\Sigma \mathbf{T}_{2}
$$ particles with KEs

$$
\mathrm{dU}=\mathrm{m} \mathrm{vdlv}
$$

$$
\begin{aligned}
& \text { Integrate: } \int_{1}^{2} d U=\int_{v_{1}}^{v_{2}} m d d v \\
& U_{1-2}=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}
\end{aligned}
$$

For a single particle, with multiple work terms:

$$
\frac{1}{2} m v_{1}^{2}+\sum u_{1-2}=\frac{1}{2} m v_{2}^{2}
$$

Initial
Kinetic
Energy

Sum of Work Done on Particle

Final
Kinetic
Energy

Now that we have the Work-Energy Equation...

What are the work terms?
Work of a force:

$$
U_{\text {Force }}=(P \cos \theta)(d)
$$

Work of friction:

$$
U_{\text {Friction }}=-F(d)
$$

(work of friction is always negative because it always acts opposite of motion)

Work of weight:

$$
U_{\text {Weight }}= \pm(m g)(\Delta h)
$$

Work of a spring:

$$
U_{\text {Spring }}=-\frac{1}{2} k\left[s_{2}^{2}-s_{1}^{2}\right]
$$

s_{1} and s_{2} are stretch!

$$
\begin{aligned}
& s_{2}=L_{2}-L_{0} \\
& s_{1}=L_{1}-L_{0}
\end{aligned}
$$

k = spring constant $L_{0}=$ unstretched length $L_{1}=$ original spring length $\mathbf{L}_{2}=$ final spring length

Where does the spring work term come from?

The Work Energy

 Equation....$$
\frac{1}{2} m v_{1}^{2}+\sum u_{1-2}=\frac{1}{2} m v_{2}^{2}
$$

can also be written, when force varies with s, as:

$$
\frac{1}{2} m v_{1}^{2}+\int F d s=\frac{1}{2} m v_{2}^{2}
$$

Area under the F -ds curve.
(force vs. displacement)

For a linear spring:

Recall our work definition: $d U=F$ ds, with $F=k s$
Integrate: $\int_{1}^{2} d U=\int_{s_{1}}^{s_{2}} k s d s=\left.\frac{1}{2} k s^{2}\right|_{s_{1}} ^{s_{2}}$

$$
U_{\text {Spring }}=-\frac{1}{2} k\left[s_{2}^{2}-s_{1}^{2}\right]
$$

This work is the green area, the area under the F vs. s curve.

Always write with a neg sign. The s_{2} and s_{1} values will interact with this sign to produce the correct overall sign for $\mathbf{U}_{\text {spring }}$.

Other applications of:

$$
\frac{1}{2} \mathrm{mv}_{1}^{2}+\int F \mathrm{Fds}=\frac{1}{2} \mathrm{mv}_{2}^{2} \text { }
$$

Traditional long bow:

Compound bow:

Other applications of:

$$
\frac{\frac{1}{2} m v_{1}^{2}+\int F d s=\frac{1}{2} m v_{2}^{2}}{\text { Area under }} \begin{gathered}
\text { the F-ds } \\
\text { curve. }
\end{gathered}
$$

Potato gun:

Slingshot:

