
Work-Energy (WE) Equation for Particles

Comments about the sign on the work term for springs.

Work-Energy (WE) Equation for Particles

Comments about the sign on the work term for springs.

Conclusion 1: A spring's natural action, when originally unstretched ($s_1 = 0$), is to do negative work.

$$\mathbf{U}_{\text{Spring}} = -\frac{1}{2} \mathbf{k} \begin{bmatrix} s_2^2 - s_1^2 \\ s_2^2 - s_1^2 \end{bmatrix} = -\frac{1}{2} \mathbf{k} s_2^2$$

Conclusion 2: If some original stretch (s_1) is present, the spring may release stored energy to the system and do positive work. The standard form of the spring

work term

$$\mathbf{U}_{\text{Spring}} = -\frac{1}{2} \mathbf{k} \left[\mathbf{s}_2^2 - \mathbf{s}_1^2 \right]$$

will ensure the proper sign if the correct initial (s_1) and final (s_2) stretches are inputted.

For example, if a spring has stretch at the original position (s_1) but no stretch at the final position ($s_2 = 0$), then energy will be released from the spring to the system. The spring does positive work. The equation accounts for this.

$$\mathbf{U}_{\text{Spring}} = -\frac{1}{2} \mathbf{k} \left[s_2^2 - s_1^2 \right] = +\frac{1}{2} \mathbf{k} s_1^2$$

Another example: If a spring has original stretch greater than the final stretch ($s_1 > s_2$), then the difference between the squared terms is negative, and the overall work is positive. The net effect is that energy is released from the spring to the system.

$$U_{\text{Spring}} = -\frac{1}{2} k \left[s_2^2 - s_1^2 \right] = \begin{array}{l} \text{Positive Work!} \\ \text{if } s_1 > s_2 \end{array}$$