Work-Energy (WE) for Rigid Bodies

From last class: The WE equation for a system of particles also applies

$$
\Sigma T_{1}+\Sigma U_{1-2}=\Sigma T_{2}
$$ to a system of rigid bodies.

Work terms ($\Sigma \mathrm{U}_{1-2}$): The same ones for particles (force, weight, spring) also apply to rigid bodies. But there is one new term, the work of a couple. (Rotation is not defined for particles.)

Work of a force:	Work of weight:
$\mathbf{U F o r c e}=(\mathbf{P} \cos \theta)(\mathrm{d})$	$\mathbf{U}_{\text {Weight }}= \pm(\mathrm{mg})(\Delta h)$
Work of friction:	Work of a spring:
$\mathbf{U}_{\text {Friction }}=-\mathrm{F}(\mathrm{d})$	$U_{\text {Spring }}=-\frac{1}{2} k\left[s_{2}^{2}-s_{1}^{2}\right]$
Work of a couple: M = couple or torque, lb-ft or N-m	
$\mathbf{U}_{\mathbf{M}}=\mathbf{M} \cdot \theta \quad \theta=\mathbf{a}$	ar displacement, radians

Work-Energy (WE) for Rigid Bodies

More on the work of a couple: If a couple, \mathbf{M}, is a function of θ, like the torsional spring on a mouse or rat trap, the energy stored in the spring is the area under the \mathbf{M} vs. θ curve.

If the couple, M, varies with $\boldsymbol{\theta}$ like for a torsional spring:

$$
\mathbf{U}_{\mathbf{M}}=\int \mathbf{M} \mathbf{d} \theta
$$

Area under $M(\theta)$ curve is energy:

Examples:
Mouse trap
Some hinges

Work-Energy (WE) for Rigid Bodies

Rigid bodies in general plane motion store kinetic energy in both translation AND rotation, so they have two KE terms.

Examples: Translation, FA Rotation

Fixed Axis Rotation

Examples: Bench grinder Hand-held grinder Spin awhile after turned off due to stored KE.

Examples of general plane motion

Kinetic energy is stored in both the translation of the mass center and the rotation of the body. Kinematics can be a challenge because you need to relate v_{G} 's and ω 's.

Example of fixed axis rotation where C_{G} is not at pin:

Fixed Axis Rotation $\mathbf{c}_{\mathbf{G}}$ not at the pin.

$$
T=\frac{1}{2} m v_{G}^{2}+\frac{1}{2} I_{G} \omega^{2}
$$

Kinematics: $\mathbf{v}_{\mathbf{G}}=\mathbf{r} \omega$

$$
O R \quad T=\frac{1}{2} I_{P i n} \omega^{2}
$$

These show that a body in fixed axis rotation whose c_{G} is not at the pin will have both v_{G} and ω terms. However, there is a simpler equation, $T=1 / 2 I_{\text {Pin }} \omega^{2}$, which can be used for this case.

From where do we get the

$$
T=\frac{1}{2} I_{\text {Pin }} \omega^{2} \text { equation? }
$$

Consider the slender bar: Its stored KE is given by:

$$
\begin{array}{|l|}
\hline T=\frac{1}{2} m v_{G}^{2}+\frac{1}{2} I_{G} \omega^{2} \\
\text { Sub in } \\
\text { kinematics: } \\
\text { Factor out } \frac{1}{2} \text { and } \omega^{2}=r \omega \\
\hline
\end{array}
$$

$T=\frac{1}{2}\left[I_{G}+m r^{2}\right] \omega^{2}$
Result:

$$
T=\frac{1}{2} I_{\text {Pin }} \omega^{2}
$$

Only use this equation for fixed axis rotation where $\mathrm{v}_{\mathrm{G}}=\mathrm{r} \omega$ applies.

