
Work-Energy (WE) for Rigid Bodies

From last class:  The WE equation 
for a system of particles also applies
to a system of rigid bodies.
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Work terms (ΣU1-2):  The same ones for particles (force, weight, 
spring) also apply to rigid bodies.  But there is one new term, 
the work of a couple.  (Rotation is not defined for particles.)

Work of a force:

U  = (P cos   )(d)Force

Work of friction:

U  =  -F (d)Friction

U  = (P cos   )(d)Force

Work of weight:

U  =    (mg)(     Weight h)

Work of a spring:
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Work of a couple:  M = couple or torque, lb-ft or N-m

U  = MM
  = angular displacement, 

in radians M +



Work-Energy (WE) for Rigid Bodies
More on the work of a couple:  If a couple, M, is a function of θ, 
like the torsional spring on a mouse or rat trap, the energy 
stored in the spring is the area under the M vs. θ curve.

U  = MM

If the couple, M, varies with     like for a torsional spring:

MdU  =M M

Area under M(  ) curve is energy:
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Examples:
Mouse trap
Some hinges

Work of a couple:  M = couple or torque, lb-ft or N-m
  = angular displacement, 

in radians M +



Work-Energy (WE) for Rigid Bodies

Rigid bodies in general plane motion store kinetic energy in 
both translation AND rotation, so they have two KE terms.
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Examples:  Translation, FA Rotation
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Fixed Axis Rotation
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Examples:  Bench grinder
Hand-held grinder

Spin awhile after turned off
due to stored KE.
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Examples of general plane motion
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 Bar sliding down wall
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Rolling Wheel
(Slip or no slip)

Kinetic energy is stored in both the translation of the mass 
center and the rotation of the body.  Kinematics can be a 
challenge because you need to relate vG’s and ω’s.



Example of fixed axis rotation where CG is not at pin:

A vG
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These show that a body in fixed axis rotation whose cG is not at 
the pin will have both vG and ω terms.  However, there is a simpler 
equation,  T = ½IPinω2 ,  which can be used for this case.
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Consider the slender bar:
Its stored KE is given by:

kinematics:
Sub in 

mr2+
1
2

T =
Factor out     and      2

1
2 IG

2

Parallel
Axis Thm

IPin
= !

Result:

From where do we get the

Only use this equation for fixed axis rotation where  vG = rω applies.




