Work-Energy (WE) for Rigid Bodies

From last class: The WE equation for a system of particles also applies to a system of rigid bodies.

$$\Sigma \mathbf{T_1} + \Sigma \mathbf{U_{1-2}} = \Sigma \mathbf{T_2}$$

Work terms (ΣU_{1-2}): The same ones for particles (force, weight, spring) also apply to rigid bodies. But there is one new term, the work of a couple. (Rotation is not defined for particles.)

Work-Energy (WE) for Rigid Bodies

More on the work of a couple: If a couple, M, is a function of θ , like the torsional spring on a mouse or rat trap, the energy stored in the spring is the area under the M vs. θ curve.

Work-Energy (WE) for Rigid Bodies

Rigid bodies in general plane motion store kinetic energy in both translation AND rotation, so they have two KE terms.

Examples of general plane motion

Kinetic energy is stored in both the translation of the mass center and the rotation of the body. Kinematics can be a challenge because you need to relate v_G 's and ω 's.

Example of fixed axis rotation where C_G is not at pin:

These show that a body in fixed axis rotation whose c_G is *not* at the pin will have both v_G and ω terms. However, there is a simpler equation, $T = \frac{1}{2}I_{Pin}\omega^2$, which can be used for this case.

Only use this equation for fixed axis rotation where $v_{g} = r\omega$ applies.