## General Projectile Problem



Projectile Problem Variables:
Launch Location: ( $x_{0}, y_{0}$ )
Launch Velocity and Angle: ( $\mathbf{v}_{0}$ at $\theta$ )
Landing Location and Time: ( $x_{L}, y_{L}$ ) at time, $t_{L}$.

## Class A Projectile Problems:

For these, you are given complete launch data:
Given: $\left(x_{0}, y_{0}\right),\left(v_{0}\right.$ at $\left.\theta\right)$, and one of $\left(x_{L}, y_{L}, t_{L}\right)$
Find: The remaining two of ( $x_{L}, y_{L}, t_{L}$ )
(1) Given: [ $\left(x_{0}, y_{0}\right),\left(v_{0}, \theta\right)$, and $\left.x_{L}\right] \quad$ Find: $\left(y_{L}, t_{L}\right)$
(2) Given: [ $\left(x_{0}, y_{0}\right),\left(v_{0}, \theta\right)$, and $\left.y_{L}\right] \quad$ Find: $\left(x_{L}, t_{L}\right)$
(3) Given: [ $\left(x_{0}, y_{0}\right),\left(v_{0}, \theta\right)$, and $\left.t_{L}\right] \quad$ Find: $\left(x_{L}, y_{L}\right)$

For problems (1) through (3), write the two position equations

$$
x=x_{0}+v_{x} t \quad y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}
$$

and solve for the two unknowns.
(4) Given: [ $\left.\left(x_{0}, y_{0}\right),\left(v_{0}, \theta\right)\right]$ Find: $h_{\text {apex }}, t_{\text {apex }}$ (at apex)
(5) Given: [ $\left(x_{0}, y_{0}\right),\left(v_{0}, \theta\right)$, and sloped ground] Find: ( $\left.x_{L}, y_{L}, t_{L}\right)$

