Projectile Paths Due to Different Launch Velocities


## Projectile Problem Variables:

Launch Location: ( $\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{0}}$ )
Launch Velocity and Angle: ( $\mathrm{v}_{\mathrm{o}}$ at $\theta$ )
Landing Location and Time: ( $x_{L}, y_{L}$ ) at time, $t_{L}$.

## Class B Projectile Problems:

For these, you are given the launch location ( $x_{0}, y_{0}$ ), the landing location ( $x_{L}, y_{L}$ ), and one of $\left(v_{0}, \theta, t_{L}\right)$.

Find: The remaining two of $\left(v_{0}, \theta, t_{L}\right)$
(6) Given: [ $\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{0}}\right),\left(\mathbf{x}_{\mathrm{L}}, \mathbf{y}_{\mathrm{L}}\right)$, and $\theta$ ] Find: $\left(\mathbf{v}_{\mathbf{0}}, \mathbf{t}_{\mathrm{L}}\right)$
(This is the most common, and the easiest, of these cases. Write the two position equations,

$$
x=x_{0}+v_{x} t \quad y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}
$$

and solve for $\mathbf{v}_{0}$ and $t_{L}$.
(7) Given: [ $\left(x_{0}, y_{0}\right),\left(x_{L}, y_{L}\right)$, and $\left.t_{\mathrm{L}}\right] \quad$ Find: $\left(v_{0}, \theta\right)$
(8) Given: [ $\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{0}\right),\left(\mathbf{x}_{\mathrm{L}}, \mathrm{y}_{\mathrm{L}}\right)$ ]

Find: Minimum $\mathbf{v}_{\mathbf{0}}$, and corresponding $\theta$ and $\mathbf{t}_{\mathrm{L}}$.
(9) Given: [ $\left(x_{0}, y_{0}\right),\left(x_{L}, y_{L}\right)$, and $v_{0}$ ]

Find: Two $\theta$ 's and two $\mathbf{t}_{\mathrm{L}}$ 's for this $\mathbf{v}_{\mathbf{0}}$.

