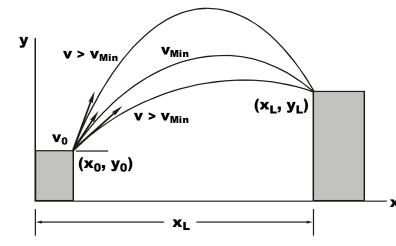
Projectile Paths Due to Different Launch Velocities



To launch a projectile from a known (x_0, y_0) to a specified (x_L, y_L) , many trajectories are possible.

The minimum launch velocity, v_{Min}, has a unique trajectory.

 For each launch velocity greater than v_{Min}, two trajectories are possible.

Projectile Problem Variables:

Launch Location: (x_0, y_0)

Launch Velocity and Angle: $(v_0 \text{ at } \theta)$

Landing Location and Time: (x_L, y_L) at time, t_L .

Class B Projectile Problems:

For these, you are given the launch location (x_0, y_0) , the landing location (x_L, y_L) , and *one* of (v_0, θ, t_L) .

Find: The *remaining* two of (v_0, θ, t_L)

(a) Given: $[(x_0, y_0), (x_L, y_L), and \theta]$ Find: (v_0, t_L) (This is the most common, and the easiest, of these cases. Write the two position equations,

$$\mathbf{x} = \mathbf{x}_0 + \mathbf{v}_{\mathbf{x}} \mathbf{t}$$

$$y = y_0 + v_{0y}t - \frac{1}{2}gt^2$$

and solve for v_0 and t_L .

- **⑦** Given: $[(x_0, y_0), (x_L, y_L), and t_L]$ Find: (v_0, θ)
- (8) Given: $[(x_0, y_0), (x_L, y_L)]$ Find: Minimum v₀, and corresponding θ and t_L.
- (9) Given: $[(x_0, y_0), (x_L, y_L), and v_0]$ Find: Two θ 's and two t_L's for this v₀.