6.2 Decrease-by-a-Constant-Factor Algorithms

- Algorithm \#1 Binay-Seach.

Problem: Given a sorted away $A[Q \cdots n-1]$ answer whetter a value K is in A.

Draft solution.
How to find solution to size $=n$ from solution to size $=\frac{n}{2}$
Algorithm Pratt:

- compare K to element in the wide or A A m]

- ir $k \geqslant A[m]$ hetum trow
- if $k<A[m]$ astr for search in lowe half
- ir $k>A[m]$ ask for reach in upper hale.
- Solution can be designed recursively.
fol final implementation can be iterative.
- Itentice version: need l low $>$ the porhon of the away being searched.

Algarthm:
Function Binary Search $(A[\theta \cdot m-2], k)$

$$
\begin{aligned}
& l \leftarrow \theta \\
& h \leftarrow n-1 \\
& w H E L E \quad l \leq h \text { Do } \\
& m=\lfloor(l+h) / 21 \\
& \neq F \quad K=A[m] \\
& E \text { ELSIE } \quad k<A[m] \\
& h \leftarrow m-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { ELSIE } \underset{\substack{\text { return } \\
h<A[m]}}{m \leftarrow m-1} \\
& \text { ELSE } \\
& l \leftarrow m+1
\end{aligned}
$$

RETURN - 1

- Analysis:
basic operator $=$

$$
\begin{aligned}
& \cdot C(n)=1+C\left(\frac{n}{2}\right) \\
& \cdot C(1)=1 \\
& \cdot C(n)=\log n+1 \\
& C(n) \in \Theta(\log n)
\end{aligned}
$$

Key points:

- Finding elements is extremely weft, it's good that use can do it fast.

Let $n=2^{k} \quad k=\log n$

$$
\begin{aligned}
& \cdot C\left(2^{k}\right)=\underbrace{C\left(2^{k-1}\right)}+\text { by back wads subs)-. }_{\cdot C\left(2^{k-1}\right)=C\left(2^{k-2}\right)+1} \\
& C\left(2^{k}\right)=C\left(2^{k-2}\right)+1+1^{C\left(2^{k-2}\right)}=C\left(2^{k-3}\right)+1 \\
& C\left(2^{k}\right)=C\left(2^{k-3}\right)+1+1+1
\end{aligned}
$$

after i subtitutions
$C\left(2^{k}\right)=C\left(2^{k-i}\right)+i$
Let $i=k$

$$
C\left(2^{k}\right)=C\left(2^{k-k}\right)+k
$$

$$
c\left(2^{k}\right)=1+k
$$

Problem \#2 Fake-Coin problem.
Suppose you have a facile of identical coins.

- ore coin is fake.

He real coins, it is light e. weight the sane as

- You only have a light.

Kevins soluhan

- split He coins in two, weight Hem.

How to sole size $=n$ from solution to size $=\frac{n}{2}$ n is even: $\left(\frac{n}{2}\right)$ us $(n / 2)$
n is even: $\left(\frac{n}{2}\right)$ us $(n / 2)$
continue search on pile that is lighter n is odd: $\left(\left\lfloor\frac{n}{2}\right\rfloor\right)$ vs $\left(\left\lfloor\frac{n}{2}\right\rfloor\right)$ vs 1

- continue search on pile that is lighter - if plates ac balanced, the single coin is the take ore.

Analysis:
bask operation: weighting.

$$
\begin{aligned}
& W(n)=1+W\left(\frac{n}{2}\right) \\
& W(1)=\theta \\
& \ddot{\#}(n)=\log _{2} n \in \Theta\left(\log _{2} n\right)
\end{aligned}
$$

Can you do Better?
Yes: By splitting into 3 piles.
Algonthm: Russian peasant multiplication.

$$
n \cdot m=?
$$

how can you find a solution for n that depends on $\frac{n}{2}$

$$
\begin{aligned}
& n \cdot m=\frac{n}{2} \cdot 2 m \quad \text { if } n \text { is even. } \\
& n \cdot m=\frac{n-1}{2} \cdot 2 m+m . \quad n \text { is odd }
\end{aligned}
$$

bat, only by 2.- multiplying by 2 is easy halving by 2 is ease.
cont....

