Designing a Web-Based Geotechnical Database for the St. Louis Metro Area

> J. David Rogers, Ph.D., P.E., R.G. Karl F. Hasselmann Chair Department of Geological Sciences and Engineering University of Missouri - Rolla

COSMOS

Consortium of Organizations for Strong Motion Observation Systems Formed in Oakland, CA in Dec 1997 Core Members are the USGS, CGS, USCOE, USBR, Puerto Rico Strong Motion Program, PG&E, Caltrans, MCEER-Buffalo, PEER-Berkeley, SCEC-Los Angeles, and the World Seismic Safety Initiative

Purpose of this briefing

- Summarize what COSMOS has accomplished in CA, NV, OR and WA
 Summarize what kinds of geodata exists for the greater St Louis metro area
- Summarize what kind of architecture we might use to establish an *information gateway* for geoprofessionals in the Midwestern USA

Needs and Motivation

- Currently, there is no over-arching organization for geotech data in the St Louis Metro area
- In the next 5 years a state-of-the-art geotech database needs to be developed
- Need for easy access of existing geologic and geotechnical data useful for assessing potential site response and preparing seismic hazards maps of Midwestern USA
- Need for up-to-date information sharing
- Need for easy updating with new information

Broader Motivation

Geo-Professional Community

- Want access to data in other organizations
 - Assist in design
- Conduct research to advance the
 - state-of-practice
 - Larger data sets

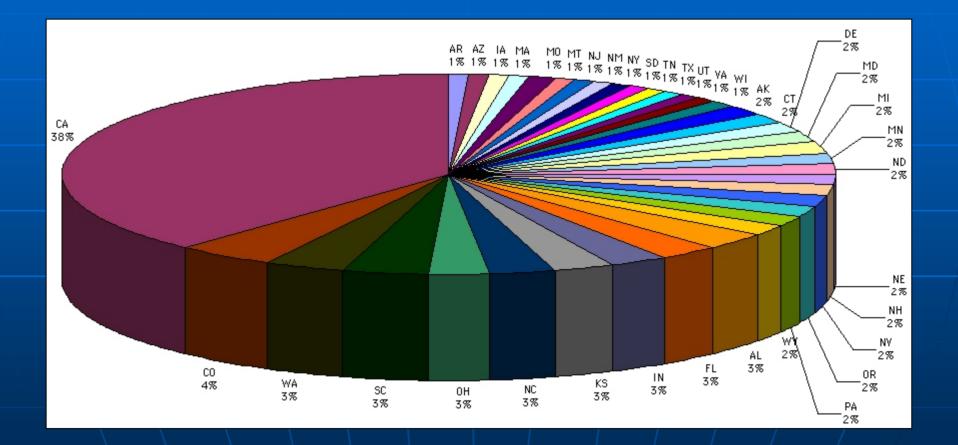
Government Agencies

 Need accurate geodata for regulatory review, facilities evaluation, hazard/risk assessment and research COSMOS used Electronic Surveys to Evaluate the Needs and Expectations of End Users

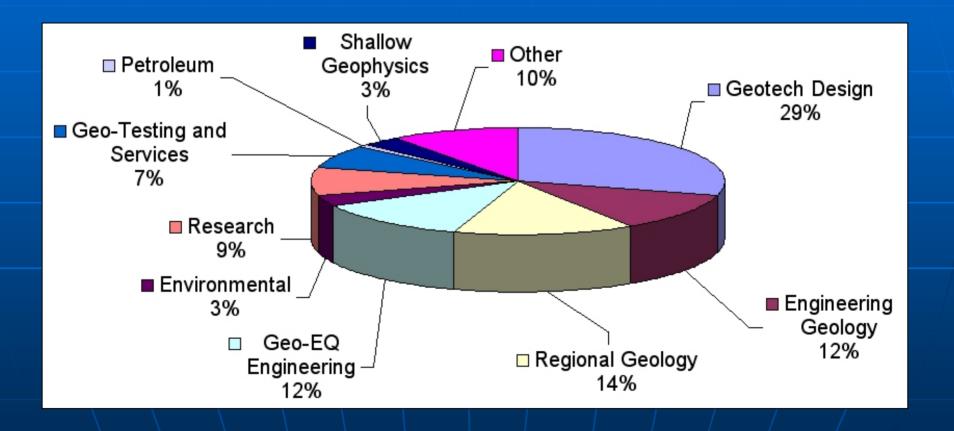
- The two primary goals of the survey were:
- Establish a baseline of current practices

2) Identify desired functional requirements of a geotechnical information management system

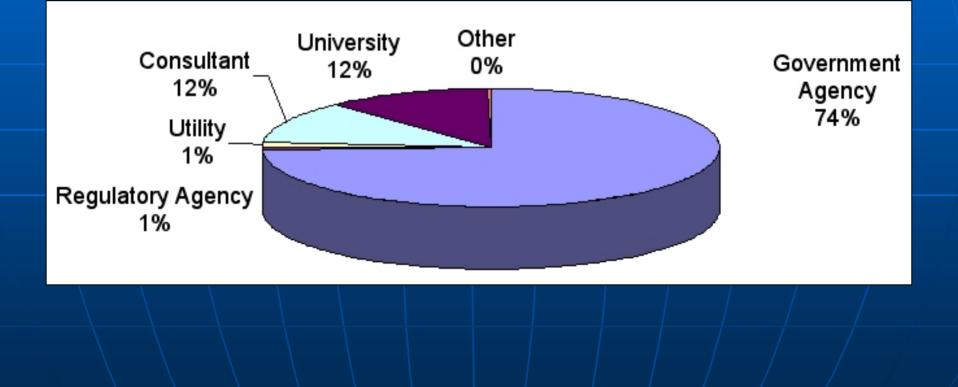
Ascertaining the Needs of End Users


- Goal 1:

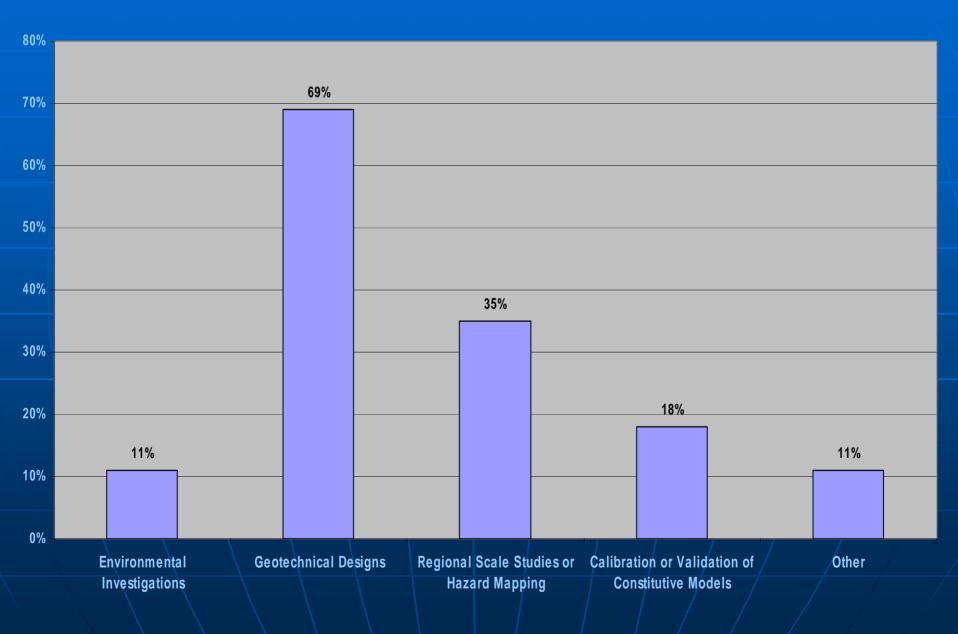
- * Users and providers of geotechnical data
 * Types of geotechnical data of interest
- * Lifecycle of the geotechnical data
- * Patterns of use


- Goal 2:

- * User interface
- * Method of access
- * Availability of data
- * Type and format of data


COSMOS Survey Responses by State (2001)

Primary Areas of Practice of Survey Contributors


Types of Organizations that Expressed Interested

Data Routinely Used in the Work Place

Main Uses of Geotechnical Data

Virtual Database Tasks

TASK 1: Development of **User Scenarios** for the purpose of defining the functional requirements of the pilot web-based system.

TASK 2: Develop **data dictionary** and **formatting standards** for archiving and web dissemination of geotechnical data, review the draft standard in a workshop, and obtain consensus of the impacted geotechnical community for a standard dictionary.

TASK 3: Develop a **Pilot Virtual Geotechnical Data Center System** which can be expanded to incorporate a broad range of geotechnical data sets.

The Web Database System

Partners become the "Information Gateway" Data Providers Data Dictionary & Standards Electronic Data Entry & Collection Data Warehousing Data Access Web-based Dissemination

Database Maintenance

- COSMOS is encouraging their partners to:
 - Put geodata and metadata into acceptable electronic format
 - Post their respective geodata on their own servers
 - Maintain quality control on geodata and metadata
 - Periodically update with new data as it becomes available

Resolve Policy Issues Data ownership & maintenance Individual organizations Information gateway Proper data attributes Access (and fees?) Liabilities? Quality ratings Establish MoU's COSMOS has dealt with these issues

Facilitate Data Access and Sharing for St Louis Metro Area

Access Data from Multiple Providers

— Missouri Department of Transportation

MODOT

Illinois Department of Transportation

Geotechnical Consultant Engineering Firms

Other Universities

Scope of Data Dictionary

Project description, borehole location, drilling methods, and tools Geotechnical logs of soils and geologic logs of rock with depth Lab test data In-situ test data Geophysical test data

Major Issues with Standardization of Geodata

Scope of standards

- Reflect realistic needs of end users and providers.
- Capture only the most relevant data.
- Use of standards
 - No need for all to adopt as an internal standards.
 - Standardize data exchange methods.

The Plan

Technical Approach Define content Identify architecture Create data dictionary Establish Policies and/or MOUs for sharing of data Establish MOUs between partners for upkeep of the database

Define Content of the Data Dictionary

- Identify users and providers.
 Define the content of the data dictionary.
 - Guided by user needs
 - Metadata to assess quality (data source, methods, calibrations, etc.)
 - Flexibility for growth

ID Architecture

System infrastructure Physical network System redundancy Security Data transfer methods • Translators (e.g. RDBMS to XML; may all be in XML if we have to start from scratch)

- Protocols (e.g. ftp, ip)
- ID Interchange format (e.g. AGS)

Create Data Dictionary

Define the data structure and format.

- Parameter name, type, units, etc.
- Relational Database Management System (RDBMS): Tables, relationships, attributes, structure, etc.
- Excel Spreadsheet Format (XML): Document type definition (DTDs), tags, etc.
- Syntax
- Guidelines for usage

COSMOS Format

Working group activities: Data dictionary content & structure • System architecture Establish MoUs among providers Technical development contracts Hosting of information gateway Funding clearinghouse • Long-term maintenance

Importance of Metadata

- Provides Point of Reference and Point of Origin
- Provides Calibration and Equipment specs
- Provides Methods for Obtaining Data
 Provides Site Specific Information
 Very important for older borehole data

So, what kind of geotechnical data do we already have? and What form is it in?

Missouri DOT Data

Scanned Boring Logs An analog system

Form T-737-1RMO Rev 10-95

-

×

MISSOURI DEPARTMENT OF TRANSPORTATION Division of Materials

Re-Typed 04/05/00 for Legibility

BORING DATA

Sheet_1_ of _13_ Project No. I-44-3 (12) Franklin County Route I-44 (WBL) Design K524R Over Bourbeuse River Skew Logged by Baker Operator Klick/Cavender Equipment Date of Report 12/07/66

Bent	Station	Location	Surface Elevation		Log of Materials *
	1280+50	47 LT.	499.6	0.0-25.0'	Silty clay.
				25.0-40.0'	Sand, gravel, and boulders.
				40.0-48.0'	Weathered dolomite and sandstone.
	1280+75	53' LT.	498.9	0.0-10.0'	Brown silty clay, few boulders.
				10.0-22.7	Gray silty clay.
				22.7-27.0	Sand.
				27.0-33.0	Sand and gravel.
				33.0-41.0	Gravel and boulders.
				41.0-43.0'	Dolomite.
				43.0-46.6'	Soft sandstone and dolomite.
				46.6-49.0'	Sandstone.
	1281+00	47' LT.	499.0	0.0-8.0'	Brown silty clay.
				8.0-23.0'	Gray silty clay.
				23.0-40.0'	Sand, gravel, and few boulders.
				40.0-48.8	Soft sandstone and dolomite.
	1281+25	50' LT.	498.6	0.0-29.0	Silty clay.
				29.0-39.0	Sand, gravel, and few boulders.
				39.0-47.9	Soft seams, sandstone and dolomite.
	1281+75	50' LT.	498.3	0.0-20.0'	Silty clay.
				20.0-39.0	Sand and gravel.
				39.0-43.8	Dolomite and sandstone.
	1282+00	47' LT.	498.3	0.0-30.0'	Silty clay.
				30.0-39.0'	Sand, gravel, and boulders.
				39.0-43.8'	Dolomite and sandstone.
	1282+25	50' LT.	498.1	0.0-27.0'	Silty clay.
				27.0-39.0'	Sand, gravel, and boulders.
				39.0-43.8'	Dolomite and sandstone, some soft seams.

* Persons using this information are cautioned that the materials shown are determined by the equipment noted and accuracy of the "log of materials" is limited thereby and by judgment of the operator. THIS INFORMATION IS FOR DESIGN PURPOSES ONLY.

Re-T	yped	04/05/0	0 for 1	Legibili		Division	of Materials	INSPORTATION		
					BO	RING DAT	A (CORE &	& SPT)		
Proje	ct No.	1-44-	3 (12)							Sheet _
Count	ty	Frank	din			Route I-4	4 (WBL)	Design	K524R	
Over		Bour	beuse Ri	ver				Skew		1
Logge		Baker	r					Operator	Fry	
Equip								Drillers Hole No.	A-66-150	
	stab. by							Date of Report	12/07/66	
Auton	natic Ha	mmer Efi	ficiency				%	Drill No.		
						Surface				
B	ent		tion 1+50		Location	Elevation		the second se	MATERIALS *	
		128	1730		47' LT.	498.5	0.0-25.0'	Silty clay.		
		-	TF	ST DAT	1	1	25.0-42.3' 42.3-48.7'	Sand and gravel. Thin dolomite cap	ouer coult:	
E	lev.	SPT B	and the second se	Na	Pocket Pen., tsf		48.7-53.7	Sandstone (soft).	over cavity.	
49	3.5'	2-1	7-1	~				Sundstone (3011).		
48	8.5	5-9	-11							
47	3.5'	4-5	5-8							
47	7.5'	2-2	2-3							
46	3.5	21-4	1-27		Gravel					
		-								
						1.1				
		1.572								
From	To	CORING	LOG (N	X Doubl	e Tube Barrel) % RQD	Notes				
42.3	48.7		n cap (ca		78 KQD	Hotes				
48.7	53.7	5.0	5.0	0						
	1									
		WATE	R TABL	E OBSE	RVATIONS					
Da	ta	Time			Depth	Depth				
Di	ite	Time C	nange	ŀ	lole Open	To Water				

		04/05/0		egibili		RING DAT.	of Materials			Sheet	3 0
Projec		I-44-3									
Count	у	Frank				Route 1-4	4 (WBL)	Design	K524R		
Over		Bourt	euse Riv	er			-	Skew			
Logge	Logged by Baker Equipment		2.12.12		Operator	Fry					
Equip							Drillers Hole No.	A-66-15	1		
Hole S	tab. by							Date of Report	12/07/66	6	
Autom	atic Har	mmer Eff	liciency				%	Drill No.			
в	ent	Station			Location E			LOG OF	MATERI	ALS *	
		1282	2+50		47' LT.	498.1	0.0-20.5	Silty clay.			
_							20.5-23.5	Sand.			
			TE	ST DAT/	1		23.5-40.0'	Sand, gravel, and	boulders.		
Dep	th, ft.	SPT BI	ows/6"	N ₆₀	Pocket Pen., ts	ſ	40.0-43.0'	Sandstone, soft.			
							43.0-46.5'	Dolomite, pitted.			
							46.5-50.0'	Sandstone (soft).			
					1.000						
/											
From	To	Run	Rec	Loss	le Tube Barrel) % RQD	Natas		UNCONFIN	UNCONFINED COMPRESSIVE ST TEST DATA		
40.0	45.0	5.0	4.5	0.5	76 RQD	Notes		Depth, ft.	Elev.	Qu. psf	P.P.,
45.0	50.0	5.0	5.0	0				6.0	492	2500 (ave)	2.0-1
		0.0	5.0	v				11.0	492	2300 (ave) 5000 (ave)	3.0-2
								16.0	487	4000 (ave)	1.5-1
								10.0	402	4000 (278)	1.5-1
		WATE	RTARI	FORSE	RVATIONS						
					Depth	Depth					
		Time (Change	1	Hole Open	To Water					
D	ate	10000	and the second								
D	ate										
)	ate m/60)Nm	N _{ce} - 0	Corrected 1	N value fo	r standard 60% SPT ficiency in percent.	efficiency.					

Illinois Geological Survey Data

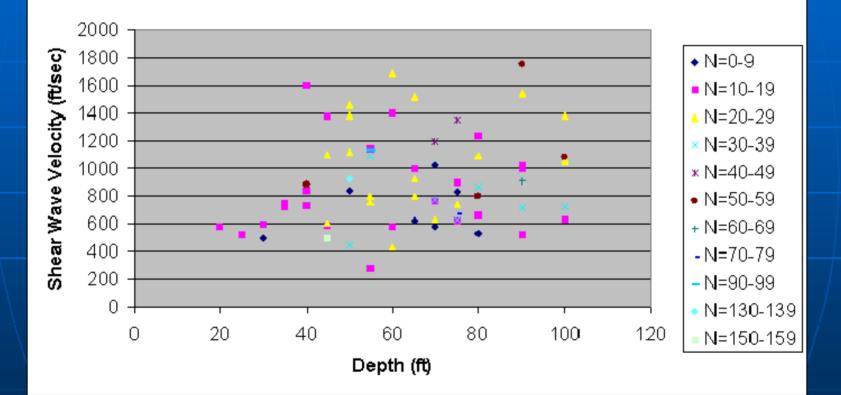
Shear Wave Velocities XML format No locations or depths

SUMMARY - Shear Wave Velocities

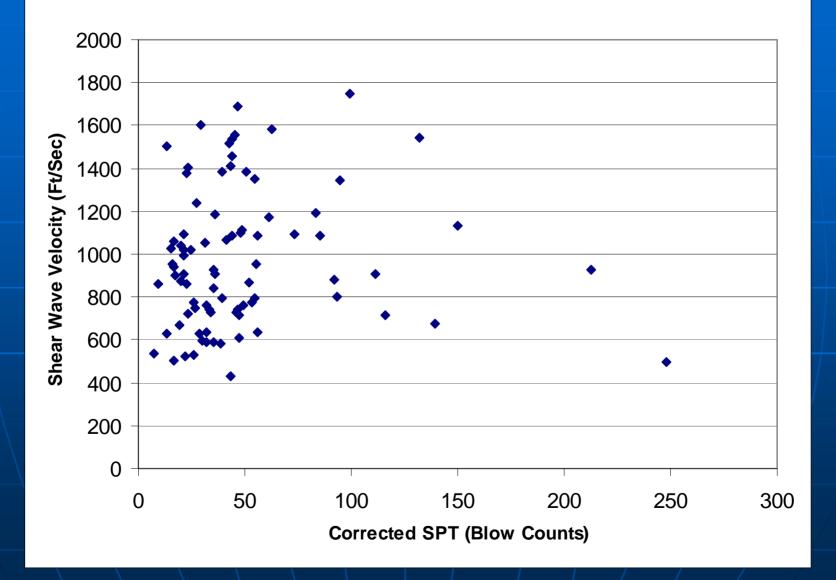
Alluvium				
		173.87	570.43 Cache Valley	Illinois
		174.53	572.60 Cache Valley	Illinois
		199.33	653.96 Wabash Valley	Illinois
		237	777.55	Indiana
		235	770.99	Indiana
		261	856.29	Indiana
		206	675.84	Indiana
		266	872.69	Indiana
		261	856.29	Indiana
		255	836.60	Indiana
		251	823.48	Indiana
		261	856.29	Indiana
		250	820.20	Indiana
		253.94	833.13 New Harmony	Indiana
		189	620.07	Kentucky
	Avg.	231.58 m/s	759.76 ft/sec	
	Minimum	173.87 m/s	570.43 ft/sec	
	Maximum	266 m/s	872.69 ft/sec	

Ordovician age

Dolomite	2,686	8,811	Illinois
	2,692	8,832	Illinois
	2,869	9,411	Illinois
	3,068	10,065	Illinois
	2,894	9,496	Illinois
	2,984	9,789	Illinois
	2,987	9,801	Illinois
	2,952	9,686	Illinois
	2,909	9,543	Illinois
Avg.	2,893 m/s	9,493 ft/sec	
Minimum	2,686 m/s	8,811 ft/sec	
Maximum	3,068 m/s	10,065 ft/sec	


Pennsylvanian age

Limestone	1,634	5,361	Illinois
	1,627	5,337	Illinois
	2,737	8,980	Illinois
	3,156	10,354	Illinois
	2,041	6,696	Illinois
	2,926	9,600	Illinois
	1,611	5,284	Illinois
	2,655	8,712	Illinois
	2,526	8,289	Illinois
Avg.	2,324 m/s	7,624 (ft/sec)	
Minimum	1,611 m/s	5,284 (ft/sec)	
Maximum	3,156 m/s	10,354 (ft/sec)	


Tennessee Data

Shear Wave Velocities from publications XML spreadsheets

Tennessee Sand (SP)

Corrected SPT versus Vs for Tennessee Sand

Database Descriptors for COSMOS Database Dictionary

Database Descriptors Used by COSMOS – e.g. SPT data

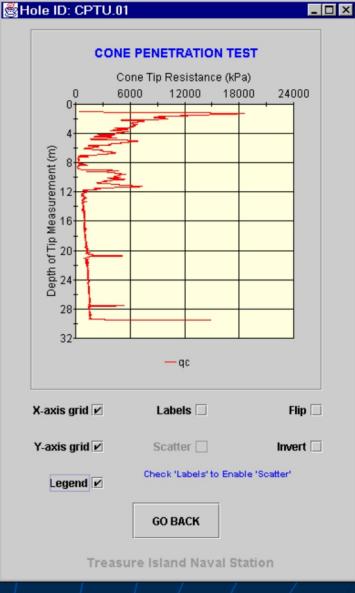
The standard penetration test (SPT) involves driving a split-spoon sample barrel into the ground from the bottom of a borehole by dropping a 140 lb (63.5 kg) hammer a height of 30 inches (0.76 m). From the test, a penetration resistance or blowcount (N) is obtained which equals the number of blows to drive the sampler over the depth interval between 6 and 18 inches (150 to 450 mm). The N-value is reported in blows per foot (blows per 300 mm). Standard testing procedures are described in ASTM D 1586. Relevant testing parameters are described in this table.

Definition	Туре	DB name	XML Path
A code or simple name for Standard Penetration Test Parameters. This value is intended to be a			
foreign key for referencing this data instance.	code	ID	SPT/Id
A value that describes the context for the development of the Id value. The Id is unique			
within this context	text	CODESPACE	SPT/CodeSpace
The length of the split-spoon sampler barrel. Standard lengths are 18 inches (450 mm) and 24		SAMPLER LENGTH	
inches (600 mm).	quantity	SAMPLER LENGTH_UOM	SPT/Length[@uom]
		SAMPLER INSIDE DIAMETER SAMPLER INSIDE	
The inside diameter of the split-spoon sampler.	quantity	DIAMETER_UOM	SPT/InsideDiameter[@uom]
The use of a liner to produce a constant inside diameter is permitted and should be noted.	boolean	LINER	SPT/Liner
The use of a basket retainer is permitted and should be noted.	boolean	BASKET	SPT/Basket
The hammer mass used to drive the split-spoon sampler. The standard mass is 140 lb (63.5 kg).	quantity	HAMMER_MASS HAMMER_MASS_UOM	SPT/HammerMass[@uom]
The type of hammer or drive-weight assembly used for the sampling and penetration. Typical hammer types include the following: a) donut, b) safety, or c) other.	text	HAMMER_TYPE	SPT/HammerType

Definition	Туре	DB name	XML Path
The mechanism used to lift and drop the hammer or drive-weight assembly. Typical hammer release mechanisms include the following: a) rope and cathead, b) trip, c) semi-automatic, d) automatic, or e) other.	text	HAMMER_RELEASE	SPT/HammerRelease
The hammer drop height for SPT penetration. The standard procedure requires a drop of 30 inches (0.76 m).	quantity	HAMMER DROP HEIGHT HAMMER DROP HEIGHT_UOM	SPT/HammerDropHeight[@uom]
The type of sampling rods used for SPT penetration. Standard nomenclature can be used such as A-rod or N-rod.	text	ROD TYPE	SPT/RodType
The external diameter of the sampling rods used for SPT penetration.	quantity	ROD EXTERNAL DIAMETER ROD EXTERNAL DIAMETER_UOM	SPT/RodExternalDiameter
The drive rod weight per unit length (typically given per meter or per foot).	quantity	ROD WEIGHT ROD WEIGHT_UOM	SPT/RodWeight
The diameter of the cathead used to pull the rope attached to the hammer. Typical diameters range from 6 to 10 inches (150 to 250 mm).	quantity	CATHEAD DIAMETER CATHEAD DIAMETER_UOM	SPT/CatheadDiameter[@uom]
The number of rope turns on the cathead for performing the SPT. Maximum allowed number of turns is 2 1/4.	quantity	ROPE TURNS	SPT/RopeTurns
A description of the equipment used to measure energy during the SPT penetration.	text	ENERGY	SPT/Energy
A text descriptor providing additional information relevant to the SPT parameters and equipment especially if those differ from standard requirements.	text	REMARKS	SPT/Remarks
The date of the last update to the data in this table	date	UPDATE	SPT/Update

Example of Additional DB Descriptors- e.g. Atterberg Limits

Atterberg Limits	The consistency of plastic soils defined in terms of shrinkage, plastic and liquid limits.			
Name	Definition	Туре	DB name	XML Path
	A code or simple name for Atterberg limits.			
ld	This value is intended to be a foreign key for referencing this data instance.	code	ID	Atterberg/Id
	A value that describes the context for the			
Code Space	development of the Id value. The Id is unique within this context	text	CODESPACE	Atterberg/CodeSpace
	The specimen, of which these Atterberg limits test results are a part. The Atterberg		CODESTACE	Alleiberg/CodeSpace
	limits test results must be related to a			
	Specimen. This value is a foreign key that should select an instance of Specimen			
Specimen	based on the Id value of the Specimen.	code	SPECIMEN_ID	Atterberg/PartOfSpecimen
Liquid Limit	The water content of a soil at the arbitrary boundary between the semi-liquid and plastic states, generally expressed in percent.	quantity	LIQUIDLIMIT LIQUID_UOM	Atterberg/LiquidLimit[@uom]
	The name of the method used to determine the liquid limit. Methods include the Liquid Limit Device and the Fall Cone.			
Liquid Limit Method		text	LIQUIDLIMIT_METHOD	Atterberg/LiquidLimitMethod


		_		
Name	Definition	Туре	DB name	XML Path
Preparation Method	The name of the method used to prepare the specimen for the liquid limit test. Methods include the Dry and Wet preparation.	text	LIQUIDLIMIT_PREP	Atterberg/LiquidLimitPrep
Plastic Limit	The water content of a soil at the arbitrary boundary between the plastic and semi-solid states, generally expressed in percent.	quantity	PLASTICLIMIT PLASTIC_UOM	Atterberg/PlasticLimit[@uom]
Shrinkage Limit	The maximum water content at which a reduction in water content will not cause a decrease in volume of the soil mass, generally expressed in percent.	quantity	SHRINKAGELIMIT SHRINKAGE_UOM	Atterberg/ShrinkageLimit[@u om]
Shrinkage Limit Method	The name of the method used to determine the shrinkage limit. Methods include the use of mercury or wax.	text	SHRINKAGELIMIT_MET HOD	Atterberg/ShrinkageLimitPre p
Natural Water Content	The water content of a soil in it's natural in situ moisture condition, generally expressed in percent.	quantity	NATURALWATERCONT ENT NATURALWATER_UOM	Atterberg/NaturalWaterCont ent[@uom]
Remarks	A text descriptor providing additional information relevant to the Atterberg Limit test.	text	REMARKS	Atterberg/Remarks

Example CPT Data on NGES site

ID

- Code Space
- CPT ID
- Depth
- Tip Resistance
- Friction Resistance
- Pore Pressure
- Inclination
- Remarks
- Updates

🚔 Sites		_ 🗆 ×
Name of	Town	State
Treasure Island Naval Station	San Francisco Bay	CA
Northwestern University Lake Fill Site	Evanston	IL
Massachusetts Military Reservation	Otis ANGB	MA
University of Massachusetts - Amherst	Amherst	MA
Texas A&M University Riverside Campus - Clay Site	College Station	TX
Texas A&M University Riverside Campus - Sand Site	College Station	TX
University of Houston Foundation Test Facility	Houston	TX

•

Secondary
 Secondar

SITE DETAILS	ABSTRACTS	BOREHOLE DATA
SHOW ALL NGES CO	NTACTS	GO BACK

📓 Cone Penetr	ation SITE: T	reasure Is	sland Na	aval Sta	tion	HOLE: C	PTU.01			
GENERAL DATA										
CPT ID	СРТ Тур	CPT Type Satu			aturation End Area Ratio			d Area Ra	atio	Remarks
			Flui	d	Corre	ection: Tip	Con	rection: Sl	leeve	
CATIFS:CPTU.01	CPTU	Wat	ter		0.9		0.015			
I										
Tip Area	Sleeve Area	Dist From			berof	Positio			acity of	Rate of
		of Sleev		Filter El	ements	Filter Ele	ments		ad Cell	Penetration
(mm^2)	(mm^2)	(mr	m)					()	MN)	(mm/sec)
10.0	150.0	100.0				TIP				20.0
Row: 1		TES	ST DATA			7380 Total		otchod		
now. T				•		7500 10(a	1100031	ciciica	PL	OT OPTIONS
Depth	Cone tip	Friction sle	eeve f	Penetratio	n pore	Penetrati	Penetra	iti		
tip measurement	resistance (qc)	resistance	e (fs) pre	essure - e	lement 1	pressure	pressur	re		
(m)	(kPa)	(kPa)		(kPa)	(kPa)	(kPa)		DISS	IPATION DATA
1.016	373.67	0.773	-8.4							
1.019	472.67	2.273	-8.4					235		
1.022	627.67	4.523	-8.4							SEARCH
1.025	825.67	5.263	-8.4							
1.027	1050.67	6.013	-8.4					_		
1.03	1290.67	6.013	-8.4					_		TEST DATA
1.033	1544.67	6.013	-8.4					_		
1.036 1.039	1798.67 2038.67	6.763 6.013	-8.4					_	<u> </u>	
1.039	2038.67	6.013	-8.4					-		DOWNLOAD
1.012	2210.01	0.010	-0.4							DOMILOAD
FETCH TEST I	ATA)	•		M		GO BACK
		1 1			1	1			/	

😹 Select Data to Plot

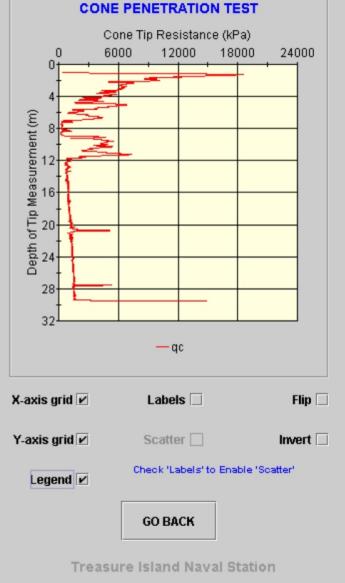
Select y-axis Item

Click on Arrow for More Choices

Select x-axis Item(s); To Select Multiple Items, Press 'ctrl' Key and Click on the Desired Items

_ 🗆 🗵

Depth of Tip Measurement


PLOT

Ŧ

GO BACK

Press 'ctrl' Key and Click on the Desired Cone Tip Resistance Friction Sleeve Resistance Penetration Pore Pressure - Cell 1 Penetration Pore Pressure - Cell 2 Penetration Pore Pressure - Cell 3 Shear Wave Velocity

Brole ID: CPTU.01

_ 🗆 ×

SPT Data at the same NGES site

🛎 Laboratory Test Information for Hole: SPT.B3								
Specimen name	Туре	Tube sam	Depth to top	Depth to base	Remarks		LAB TES	TS
		recovery	of specimen	of specimen				
		(mm)	(m)	(m)		Test	Description	an aft at Tast
C-B3:109						Test		ion of Lab Test
C-B3:127						GRAD	GRADATION	
G-B3:05.4	SSD		5.2	5.6	Grey fill lay			
G-B3:08.5	SSD		8.2	8.7	Grey fill lay			
G-B3:10.0	SSD		9.8	10.2	Shoal Laye			
G-B3:10.4	SSD		10.2	10.7	Shoal layer			
G-B3:100								
G-B3:27								
G-B3:54								
G-B3:85								
							LAB DAT	A
			ght the Approp ect the Lab Det					
	•	DO	MNLOAD	GO BACK				

CPT Data in Database Form

CPT ID	DEPTH		TIP RESISTANCE		FRICTION RESISTANCE		PORE PRESSURE	INCLINATION DEGREES	REMARKS
731 TC	0.05	ft	893.87	ton	2.3355	na		0.45	
/ /									
731 TC	0.1	ft	594.47	ton	4.4059	na		0.6	
731 TC	0.15	ft	415.73	ton	3.4361	na		0.1	
731 TC	0.2	ft	265.97	ton	2.5304	na		0.09	
731 TC	0.25	ft	223.64	ton	2.0594	na		0.06	
731 TC	0.3	ft	207.76	ton	1.9412	na		0.12	
731 TC	0.35	ft	158.67	ton	1.6396	na		0.07	
731 TC	0.4	ft	121.87	ton	0.9642	na		0.22	
731 TC	0.45	ft	88.03	ton	0.859	na		0.22	

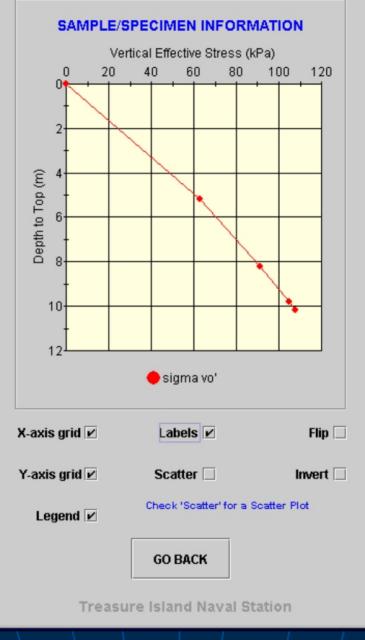
Sieve Analysis

👹 Gradation	SITE: Treasure	e Island Naval	Station	HOLE: SP1	r.83 💶 🗵 🗶			
GENERAL DATA								
		C LITE OLE	2010					
Test ID	Drying method	Total hydrometer		nber passing	Remarks			
		sample weight	all hydrom	eter specimen				
		(N)						
CATIFS:SPT.B3:	. Oven				Fines washed thro			

SIEVE ANALYSIS

HYDROMETER ANALYSIS

Sieve opening		
(mm)		
0.075		
0.106		
0.25		
0.425		
0.85		
2.0		
4.75		


PLOT OPTIONS

Percent passing	Particle size		
(%)	(mm)		
PLOT O	PTIONS		

DOWNLOAD

GO	BACK	

🖄 Vertical Effective Stress Profile: SPT.B3 💦 💶 🗙

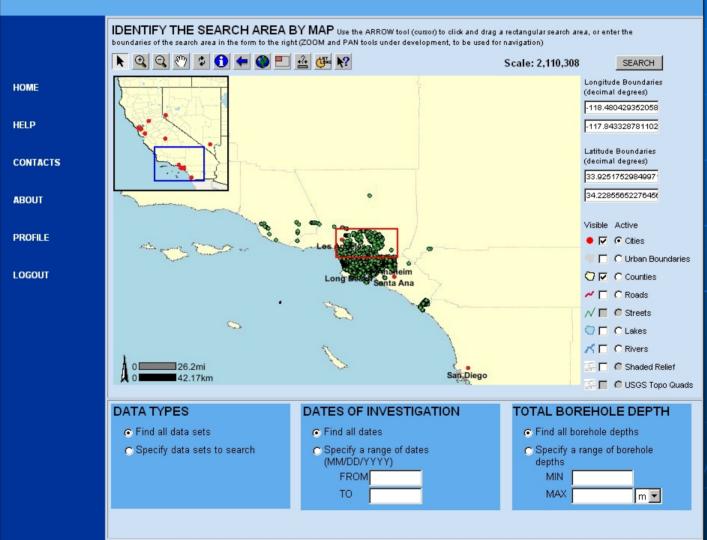
COSMOS Virtual Geotechnical Database Architecture

 ESRI ArcIMS - Front Door
 XML (Excel) and COSMOS Database File System
 Java Script - Back end

Long-Term Objective

- Extend the pilot system and develop a web-based system linking multiple data sets
- Capable of serving the broad needs of practicing geotechnical and earthquake hazards professionals for efficient access to geotechnical data
 Create GIS based hazard maps that can be incorporated into the geotechnical data set

Virtual Geotechnical Database ArcIMS / XML System


Example Inquiry

Virtual Geotechnical Database

Virtual Data Center

For Geotechnical Data

Virtual Data Center

For Geotechnical Data

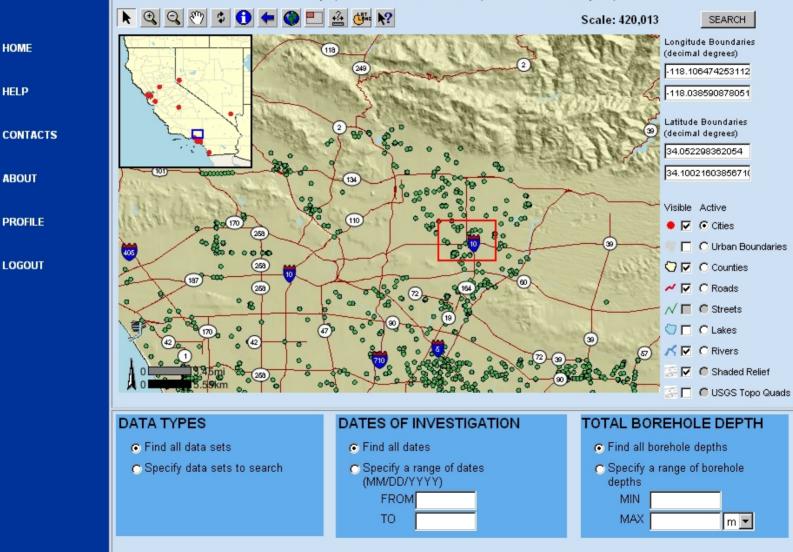
Search Results

	Your search returned 550 data sets from the following data sources					
	PROJECT NAME	DATA TYPE	DATA SOURCE	PROJECT DATE	LAST UPDATED	DOWNLOADS/ CONTACT
HOME	ORANGE FWY 57 AND TONNER CANYON	DGC, FLL, BLG, SPT	50	1989-12-10	2002-03-14	
HELP	BRIDGE ORANGE FWY 57	BLG, DGC, FLL, SPT	60	1989-12-10	2002-03-14	
CONTACTS	ORANGE FWY 57	DGC, FLL, BLG, SPT	85	1989-12-10	2002-03-14	
ABOUT	C.C. Industries	BLG, DGC		1989-12-10	2002-03-14	
PROFILE	Kayo Oil Company - Jet Gas Station	BLG, DGC, FLL, SPT	57	1989-12-10	2002-03-14	
LOGOUT	Mobil Oil Corporation Service Station No. 18- F34	SPT, BLG, DGC, FLL	50	1989-12-10	2002-03-14	
	Mobil Oil Corporation - Service Station No.18- F34	SPT, FLL, BLG, DGC	31.5	1989-12-10	2002-03-14	
	Mobil Station 11-E13	BLG, DGC, FLL, SPT		1989-12-10	2002-03-14	
	City of La Habra Fire Station No. 2	SPT, BLG, DGC, FLL	31	1989-12-10	2002-03-14	
	Lincoln Mortgage	BLG, DGC, FLL, SPT	60	1989-12-10	2002-03-14	
	Former Chevron Station No. 9-2214	BLG, DGC, FLL, SPT	35	1989-12-10	2002-03-14	
	Air Conditioning Systems, Inc.	FLL, SPT, DGC, BLG	50	1989-12-10	2002-03-14	
	Cleere Property	FLL, SPT, DGC, BLG	28	1989-12-10	2002-03-14	
	UGST Site Assessment	BLG, DGC, FLL, SPT	36	1989-12-10	2002-03-14	

Virtual Data Center For Geotechnical Data

HOME

HELP


ABOUT

PROFILE

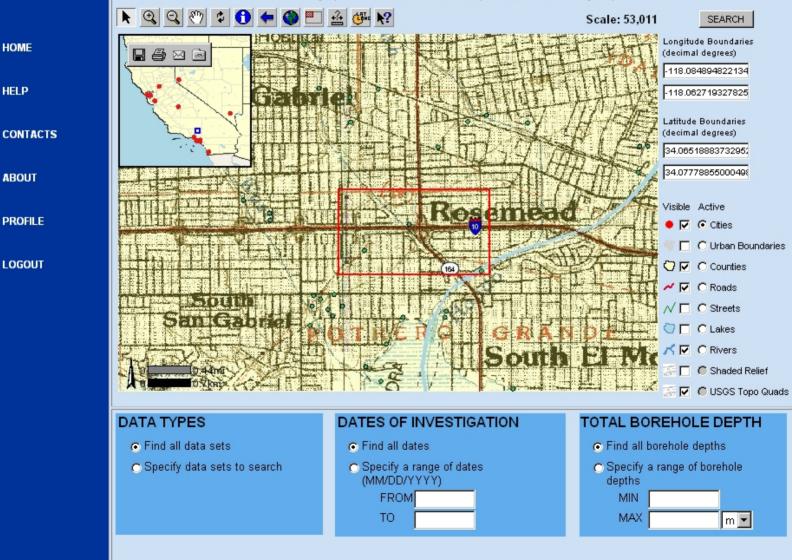
LOGOUT

IDENTIFY THE SEARCH AREA BY MAP Use the ARROW tool (cursor) to click and drag a rectangular search area, or enter the boundaries of the search area in the form to the right (ZOOM and PAN tools under development, to be used for navigation)

Virtual Data Center For Geotechnical Data

HOME

HELP


ABOUT

PROFILE

LOGOUT

IDENTIFY THE SEARCH AREA BY MAP Use the ARROW tool (cursor) to click and drag a rectangular search area, or enter the boundaries of the search area in the form to the right (ZOOM and PAN tools under development, to be used for navigation)

Virtual Data Center

For Geotechnical Data

	Search Results						
	Your search returned 2 data sets from the following data sources:						
HOME	PROJECT NAME	DATA TYPE	DATA SOURCE	PROJECT DATE	LAST UPDATED	DOWNLOADS/ (CONTACT
	2922	BLG	Unknown	1700-01-01	2004-02-04	ė,	
HELP	2913K	BLG	Unknown	1700-01-01	2004-02-04		
CONTACTS							
ABOUT		Key to DOWNLO	ADS/CONTACT INFO:				
PROFILE		Do Do		oft Excel Format			
LOGOUT		Do Do	wnload available in COSMC				
200001		PREVIEW Gr	aphical Preview of data is a				
			NEW SE	ARCH			

CPT Data in Database Form

CPT ID	DEPTH		TIP RESISTANCE		FRICTION RESISTANCE		PORE PRESSURE	INCLINATION DEGREES	REMARKS
731 TC	0.05	ft	893.87	ton	2.3355	na		0.45	
/ /									
731 TC	0.1	ft	594.47	ton	4.4059	na		0.6	
731 TC	0.15	ft	415.73	ton	3.4361	na		0.1	
731 TC	0.2	ft	265.97	ton	2.5304	na		0.09	
731 TC	0.25	ft	223.64	ton	2.0594	na		0.06	
731 TC	0.3	ft	207.76	ton	1.9412	na		0.12	
731 TC	0.35	ft	158.67	ton	1.6396	na		0.07	
731 TC	0.4	ft	121.87	ton	0.9642	na		0.22	
731 TC	0.45	ft	88.03	ton	0.859	na		0.22	

California Geological Survey Seismic Hazard Mapping ArcIMS System

Example Inquiry

California Home

Welcome to the CGS's Seismic Hazard Mapping Program (SHMP) Data Access Page

See Left Navigation Bar for Mapping Options

Choose a mapping option from the Left Navigation Bar

Purpose of the Map

This map will assist cities and counties in fulfilling their responsibilities for protecting the public safety from the effects of earthquake-triggered ground failure as required by the <u>Seismic Hazards Mapping Act</u>

For information regarding the general approach and recommended methods for preparing this map, See <u>DMG</u> <u>Special Publication 118</u>, *Recommended Criteria for Delineating Seismic Hazard Zones in California*

For information regarding the scope and recommended methods to be used in conducting the required site investigations, see <u>DMG Special Publication 117</u>, *Guidelines for Evaluating and Mitigating Seismic Hazards in California*

Seismic Hazard Mapping HOME

Welcome to California

Zone Maps, Reports, & GIS Data

About the Maps

Laws and Guidelines

Affected Cities and Counties

Probabilistic Seismic Hazard Assessment Maps

Alguist-Priolo Earthquake Fault Zones

> Seismic Hazards Mapping Bulletins

Mapping Options:

Download Data
 Review Maps

Click on the Map of California to Select a SHMP Map Area California Home

Southern California Interactive Quadrangle Map

Seismic Hazard Mapping HOME

Welcome to California

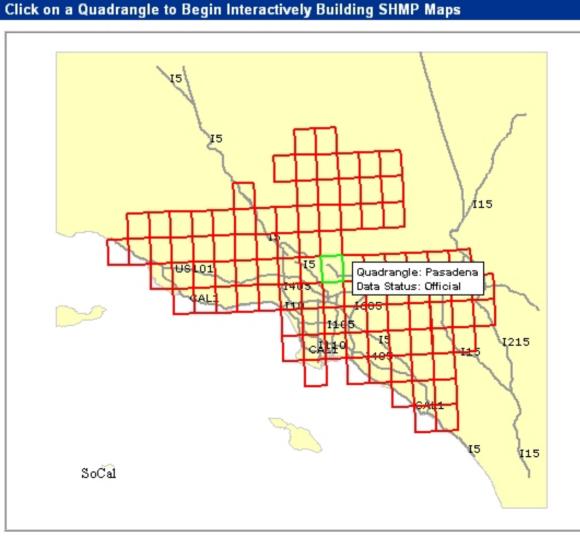
Zone Maps, Reports, & GIS Data

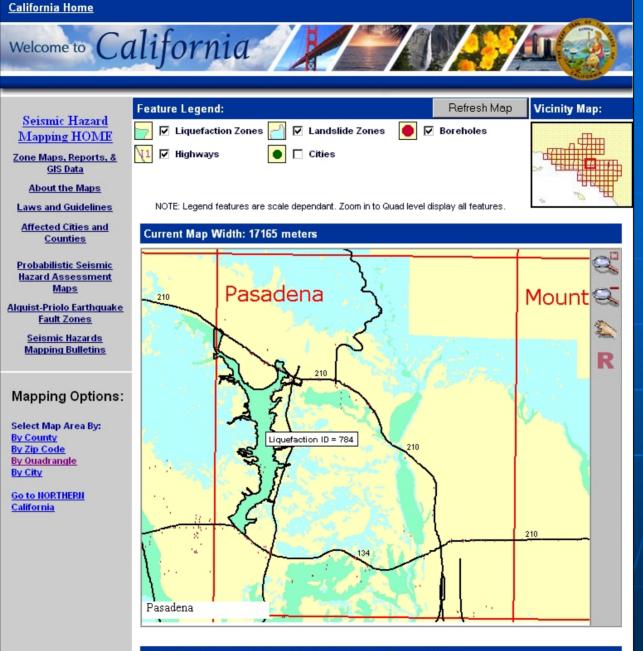
About the Maps

Laws and Guidelines

Affected Cities and Counties

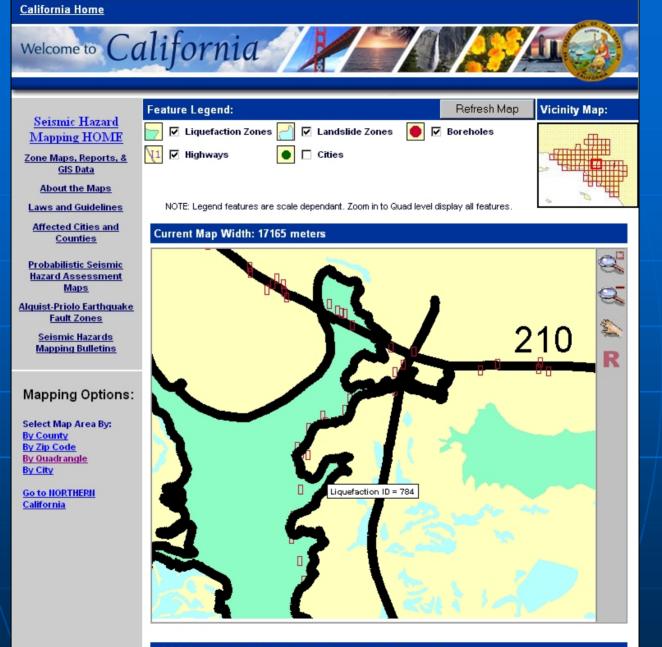
Probabilistic Seismic Hazard Assessment Maps


Alquist-Priolo Earthquake Fault Zones


> Seismic Hazards Mapping Bulletins

Mapping Options:

Select Map Area By: By County By Zip Code By Quadrangle By City


<u>Go to NORTHERN</u> California

USGS Quadrangles Available for Download in Current Map:

Los Angeles Hollywood Mount Wilson Pasadena Burbank Condor Peak Los Angeles Hollywood Mount Wilson Pasadena Burbank Condor Peak

USGS Quadrangles Available for Download in Current Map:

Los Angeles Hollywood Mount Wilson Pasadena Burbank Condor Peak Los Angeles Hollywood Mount Wilson Pasadena Burbank Condor Peak