This document contains subject matter to which OMAX Corporation has proprietary rights. Recipients of this document shall not duplicate, use, or disclose information contained herein, in whole or in part, for any use other than the purpose for which this manual was provided.

OMAX Corporation believes the information described in this manual is accurate and reliable. From time to time, design improvements will be made to the JetMachining Center. Photographs, text, and sketches within the body of this manual may not exactly represent your equipment. In general, this manual contains the most up-to-date information available. However, OMAX Corporation cannot accept any responsibility, financial or otherwise, for any consequences arising out of the use of this material. The information contained herein is subject to change, and revisions may be issued to advise of such changes or additions.

OMAX strives to continually improve their user documentation. If you have any questions or concerns about the content of this operator’s guide, we want to hear from you. Please e-mail us at tech_writing@omax.com or contact us by mail at:

OMAX Corporation
Technical Publications
21409 72nd Avenue South
Kent, WA, USA 98032

OMAX Corporation is continually improving the OMAX JetMachining® Center to bring you the best in abrasive jet machining technology. For that reason, your OMAX JetMachining Center may differ slightly from what is described in this document. If you have any questions, please feel free to contact us at 1 800-838-0343 or at e-mail techsupport@omax.com.

You can also receive technical support on-line at: http://www.omax.com/support (user name and password required for access).

For Customer Service contact or warranty information, please refer to the OMAX web site at http://www.omax.com.

OMAX®, MAXJET®, Intelli-MAX®, Tilt-A-Jet®, MAXJET4®, and JetMachining® are registered trademarks of OMAX Corporation.
Intelli-TRACETM is a trademark of OMAX Corporation.
A-Jet® is a registered trademark of OMAX Corporation.
Windows® is a registered trademark of Microsoft Corporation.

Original Instructions in English
October 2017
© 2017 OMAX Corporation
Table of Contents

OMAX A-Jet Installation Setup

- A-Jet Safety 1
- A-Jet Installation Settings 1
 - A-Jet Initial Settings for Make 1
 - Verifying the Correct Tilt Axis Step Value 5
 - Changing the Rotation Axis Motor Step Value 7
- Resetting the Motor Step Value 8
- A-Jet Maintenance 11
 - Tools Required 11
 - General Maintenance Procedures 12
 - A-Jet Hardware and Component Alignment 15
 - Shear-Screw Replacement 16

A-Jet Inlet Body and Pull to Open Valve Rebuild

- Rebuilding the A-Jet Pull to Open Valve 19
- Remove the Air Actuator 19
- Rebuilding the Air Actuator Assembly 20
- Disassembling the Inlet Body 22
- Rebuilding the Inlet Body 22
- Attaching the Air Actuator 25
- Troubleshooting 27
 - Pull to Open Valve Leaking Following Rebuild 27

A-Jet Tilt Nipple Replacement and Swivel Rebuild

- Verifying Causes of Leaks 29
- Rebuilding the A-Jet Collared Swivel 30
 - Removing the Swivel from the A-Jet Assembly 30
 - Rebuilding the A-Jet Swivel 32
 - Reassembling the A-Jet Swivel 33
- Replacing the A-Jet Tilt Nipple 37
- Testing the A-Jet Swivel for Leaks 44
- Final Assembly 44

A-Jet Abrasive Feed Tube Replacement

- Replacement Parts Required 47
- Tools Required 47
- Getting Started 47
- Replacing the A-Jet Abrasive Feed Tube 48
 - Testing the A-Jet Swivel and Abrasive Feed Tube 58

A-Jet Service

- Customer Support 59
OMAX A-Jet Installation Setup

This document provides procedures necessary for installation setup, and performing routine A-Jet maintenance activities. For safety and operator instructions, please refer to the OMAX A-Jet User’s Guide, P/N 400610.

A-Jet Safety

WARNING! Never place your hands near the cutting nozzle tip. The A-Jet cutting nozzle can quickly move without warning in unexpected directions while operating. Be careful of being pinched. The servos driving the OMAX A-Jet are strong enough to crush bones and cause serious injuries. When the A-Jet is operating, do not touch it!

WARNING! When piercing or cutting with the A-Jet, there could be additional splashing of water and garnet. Always wear safety glasses for eye protection. Consider using a splash shield available from OMAX.

Refer to your equipment user’s guide for safety requirements.

Caution: Do not attempt to operate the A-Jet without the shear bolts as severe damage to the hardware may occur.

A-Jet Installation Settings

A-Jet Initial Settings for Make

Launch Make:

1. In the Setup tab, select Advanced / Advanced/Administrator Setup. Then provide your administrator password to log in.

```
Figure 1
```

2. In the Motor Setup tab, ensure that A-jet is selected in Z-Axis Setup for either Z1, or Z2, depending upon your system’s configuration.
3. Choose the orientation of the A-Jet according to your machine’s configuration, either right or left-hand side.

4. Select the A-Jet tab:

 Note: The Tilt-A-Jet and A-Jet tabs do not show when not selected for either Z1 or Z2 in Z-Axis Setup.

5. Set the A-Jet Tilt Axis steps to max value to 3333 (see Caution below).

Caution: Currently, Make provides “3333” as the default value. Earlier A-Jets may require that this value be set at “2000”. Refer to Verifying the Correct Tilt Axis Step Value, page 5, for instructions on determining if your A-Jet is correctly configured using “3333”.

6. On the A-Jet tab for all OMAX machines, set the Minimum and Maximum rotation axis degrees as follows:
Note: In earlier versions of the software (MAKE V23 and earlier) the dialog was different. The user entered different numbers for Maximum/Minimum rotation angle for left and right-hand side configurations (695/695 for left-hand side and 515/875 for right-hand side).

7. Select the Motor Setup tab in Administrator Setup and set the inches/step for Z axis value to either 0.001 or 0.0005 depending on the type of lead screw installed in your A-Jet.

Caution: You must verify that the inches/step value entered for your A-Jet is accurate using the procedure that follows:

To verify the correct Z-axis step value for your A-Jet:

a. Enter 0.0005 for the inches/step for Z axis value (see Figure 6).

b. In Make, click View and select Show Z Axis Control.

c. Ensure that the Z-axis is not raised near the top of its height limit and has at least 3 inches of upward travel still available.

d. With the Move Z controls, click Move Z1 and enter 1 for inches (Up):

e. Click Go! to raise the Z-axis 1 in.
f. Measure the actual distance raised by the Z-axis.

g. If the distance is exactly 1 in., the inches/step value is correct and you can continue to Step #8. If a distance other than 1 in. was measured, multiply 0.0005 by [the distance measured/the distance entered for Move Z]. Enter that value for inches/step for Z axis.

8. In Make, click the Change Path Setup button. For Enter your Material Setup here, be sure to check Using Tilting on Path:

![Figure 7](image)

Note: Whenever the A-Jet is enabled and tilt is applied to entities, the cutting model optimizations functions for lead length, corner passing etc. are not available. Lead length optimization is only available if no purposeful tilting is applied.

9. If cutting angles, the stand-off distance for the A-Jet must be set at 0.080 in. Use the Motion tab in Make to display Stand-Off Preference:

![Figure 8](image)

Note: Increase the stand-off or use the A-Jet Terrain Follower on warped or wavy material.

10. In Make on the Event & Relay Timing tab (Setup/Event and Relay Timing), increase the dwell time to provide ample time for clearing the abrasive out of the feed line to 3.0 second.

![Figure 9](image)
Verifying the Correct Tilt Axis Step Value

Use this test to verify that the value entered for the **A-Jet Tilt Axis steps to max** input matches the requirement of the A-Jet installed on your machine. Earlier A-Jets were provided with tilt actuators having 30:1 gear ratios requiring a tilt axis step value of 2000; later gear ratios were changed to a 50:1 ratio requiring a 3333 value for the tilt axis step.

Typically, the **A-Jet Tilt Axis steps to max** value should be set at 3333 for A-Jets with serial number **AZ110538** and above (50:1 ratio A-Jets); or set at 2000 for A-Jets with serial # **AZ110537** and below (30:1 ratio A-Jets).

Caution: Since some earlier A-Jets may have been refurbished with a 50:1 tilt actuator, it is recommended that this test be done for all A-Jets to verify the correct Tilt Axis step value.

To view the existing values assigned for **A-Jet rotary axis steps per revolution** and **A-Jet Tilt Axis steps to max**, click **Setup/Advanced/Advanced Administrator setup**, enter your password, and then click the **A-Jet** tab:

![Setup/Advanced/Advanced Administrator setup](image)

Caution: These settings are set from the factory and are machine specific. Do not adjust these values without direction from OMAX Technical Support. Changes made here can have severe effects on the accuracy of your machine.

- **A-Jet rotary axis steps per revolution:** 7750
- **A-Jet Tilt Axis steps to max:** 3333

3333 for A-Jets with 50:1 ratio tilt actuators

2000 for A-Jets with 30:1 ratio tilt actuators

![A-Jet serial number](image)

Verify the correct tilt axis step value for your A-Jet configuration:

1. Close the **Advanced/Administrator Technical Setup** window.
2. Position the **A-Jet** at a **table** location where it can rotate freely and its rotation position is easily observed.
3. Click the **Specify** button in the **A-Jet** control window.
4. In the **Specify Absolute Angles of the Jet** window, click **Specify jet Tilt and Direction Angle**, enter “42” for the **Tilt Angle** and “0” for the **Direction Angle**.

![Specify Absolute Angles of the Jet](image1)

Figure 11

5. After entering the correct angles, click **Go**.

6. Once the **A-Jet** moves to its specified tilt and rotation angles (42 and 0), compare the alignment of the lower part of the **A-Jet** (nozzle) with the upper part:

 a. When the **A-Jet** has the correct **tilt axis step value** entered, the sides of both the top and bottom **surfaces** will be aligned flush, and the **top edge** will be approximately parallel to the **bottom edge**. See Figure 12.

![A-Jet alignment](image2)

Figure 12
b. When the A-Jet has the incorrect **tilt axis step value** entered, the sides of both the top and **bottom surfaces** will not be aligned flush, and the **top edge** will not be parallel to the **bottom edge**. See Figure 13.

![Figure 13](image)

7. If your A-Jet matches the alignment illustrated in Figure 12, the correct **tilt axis step** value has been entered and this test is complete.

8. If your A-Jet matches the alignment illustrated in Figure 13, the wrong **tilt axis step** value has been entered. You must re-enter the alternative value (2000 or 3333) and repeat this test to obtain the expected results. You should also verify perpendicularity calibration settings are correct. See Calibrate Tilt option, Figure 18, page 9.

Changing the Rotation Axis Motor Step Value

The default motor step value for all OMAX machines is **15100**.

To determine your current motor step value:

![Figure 14](image)

Note: The option, “Calibrate Perpendicularity”, is visible only in debug mode or when Z-axis alignment calibration values have been assigned.
2. Enter your OMAX password to access administrator setup functions and click OK.

![Figure 15](image1.png)

3. From the A-Jet Alignment Calibration Wizard pop-up window, select the Rotational Calibration tab to view your currently set Motor Steps value:

![Figure 16](image2.png)

4. Select the Rotational Calibration tab.

![Figure 16](image3.png)

Resetting the Motor Step Value

The default motor step value of 1915 is for an A-Jet with a 30:1 ratio tilt actuator (refer to "Verifying the Correct Tilt Axis Step Value" for details). For A-Jets with the 50:1 ratio, the Motor Steps value must be increased to 3205. Use the following procedure to verify/quickly set this value.

To quickly set your Motor Steps value to 3205:
1. Press **Shift + ~** (tilde) to access the “**Testing & Diagnosis**” menu.

2. Enter your OMAX **password** to access **administrator setup functions** and click **OK**.

![Figure 17](image)

3. Point to **Tilt-A-Jet/A-Jet**, and then click **Calibrate Tilt/A-Jet Parallel Factory Settings**.

![Figure 18](image)

4. Enter your OMAX **password** to access **administrator setup functions** and click **OK**.

![Figure 19](image)
5. Type “3205” for the Tilt calibration value (for a 50:1 ratio A-Jet) and click Save to exit the Perpendicularly Calibration window:

6. Perform the A-Jet Alignment calibration to fine-tune the alignment.
A-Jet Maintenance Tools Required

<table>
<thead>
<tr>
<th>Tool</th>
<th>On/Off Valve Rebuild</th>
<th>Nipple Replacement</th>
<th>Swivel Rebuild</th>
<th>Abrasive feed Tube Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component drawings</td>
<td>P/N 400645</td>
<td></td>
<td></td>
<td>P/N 400646</td>
</tr>
<tr>
<td>1/2 in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/8 in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/16 in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/8 in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/8 in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torque wrench</td>
<td>(to set 25 in-lb; 225 in-lb)</td>
<td>(to set 25 ft-lb)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Goop®</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubriplate®</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loctite® #2760 (provided)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8 in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8 in. Allen hex socket</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large flat-tipped</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 Phillips</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft-jawed vise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagonal cutters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-Jet Tooling Kit*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seal pack ejector tool (provided)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seal pack push tool (provided)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanner wrench</td>
<td></td>
<td></td>
<td>P/N 304512</td>
<td></td>
</tr>
<tr>
<td>Tie wraps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical tape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring tape (to 8 ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Maintenance Procedures

Follow these steps any time you perform any maintenance on the A-Jet assembly.

Caution: All components removed from the A-Jet assembly should be cleaned prior to/during maintenance, and all maintenance should be performed in a clean environment. Any introduction of dirt or contaminants will negatively impact the functionality of the A-Jet.

Caution: For accurate results when using a crows foot to set a torque value, always rotate the crows foot at a 90 degree position in relation to the torque wrench as illustrated below; never take a torque reading with it set in the same direction as the wrench:

1. Clear the work area of all materials to allow sufficient room for A-Jet disassembly.
2. Position the A-Jet at a location on the table that allows easy maintenance access for the applicable maintenance procedure.

Note: Always position the A-Jet head at a hard stop before loosening or tightening the nozzle.

3. Ensure the main power, air, and water for the OMAX pump are OFF.

WARNING! WARNING! Never do maintenance on the equipment with the main AC disconnect ON or unlocked. Always follow standard lockout/tagout procedures.

4. Bleed off the residual air pressure from the system by allowing the on/off valve on the nozzle to open, and ensure there is no pressurized water in the high-pressure lines.
5. Verify all parts, drawings, and tools required for the applicable maintenance task are available. Refer to the A-Jet Maintenance, Tools Required section on page 11 for tools and drawings.
6. Place a tray under the A-Jet to prevent dropped items from falling into the catcher tank.
7. Remove all dirt, abrasive, water, and any other contamination from the A-Jet and its components.
8. Pull the abrasive feed tube from the nozzle assembly.

Figure 21

9. If not already done, remove the nozzle assembly from the A-Jet assembly per OMAX-specified nozzle removal procedures.

![Figure 22](image)

11. Remove the last chance screen and ring seal assembly from the nozzle inlet body.

![Figure 23](image)

Note: Use either a small tool that can be inserted into the last chance screen allowing it to be pulled out, or use a small blast of air from an air nozzle to remove these two components.

![Figure 24](image)

12. Perform maintenance and re-assemble the A-Jet assembly.

Note: Do not attach the nozzle assembly at this time!

13. Flush the machine after maintenance as follows:
 a. Turn ON air, power, and water.
 b. Turn the pump and charge pump ON.
 c. Turn the table controller ON.
d. Rotate the **A-Jet** to its vertical position.

e. Position the **A-Jet assembly** about 4-5 in. above the table slats.

Note: To minimize splashing, you could position it over Jet-Brick™ or place a piece of cardboard or rags over the slats beneath the A-Jet.

f. Open **Make**.

g. In the main menu, select **File/Open**.

h. Right-click in the white space to open your permanent bookmarks.

i. Click **OMAX Sample Files (for all users)**.

j. Select **Machine_Diagnostic_Files**.

k. Scroll down the list, select **CycleTest_NoAbrasive_100_Cycles.ord**, and click **OK**.

l. Click **Begin Machining** then click **Start**.

m. Inspect the system for leaks and repair any found.

n. If no leaks are found, clean and insert the **final filter screen** components.

14. Install the **nozzle assembly** components per OMAX specified procedures.

Note: When installed in the nozzle body, the ring seal and filter screen should be flush with each other.

15. In **Make**, click the **Test** button.

16. From the **Test Pump and Nozzle** dialog box, select **Pump Only (Jet is off, Main Pump is active)**, and for **Pump Pressure**, select **Low**:

![Image of Test Pump and Nozzle dialog box]

Figure 25

17. Click the **Start Test** button and inspect the system for water leaks. Let the test run for the full minute.
18. From the Test Pump and Nozzle dialog box, select Pump Only (Jet is off, Main Pump is active), and for Pump Pressure, select High:

![Figure 26](image)

19. Click the Start Test button and inspect the system for water leaks. Let the test run for the full minute.

20. If leaks are observed, perform realignment of applicable components, or repair as needed.

21. Repeat steps 3-20 until the system is performing without any leaks.

22. Once the system tests and repairs are complete, attach the splash guard and abrasive feed tube.

![Figure 27](image)

Note: You will also need to perform the A-Jet Precision Calibration to re-establish the A-Jet error map if precision calibration had been performed previously.

A-Jet Hardware and Component Alignment

As a general practice, but especially with A-Jet components, alignment and proper assembly of tubing, fittings, and all components is highly critical. The following best practices are designed to prevent leaks when assembling A-Jet and attached components.

- All plumbing should be installed so there is no tension, twisting, or binding, when the components are assembled. To prevent these issues:
 - Use the appropriate lubricants called out in assembly/rebuild instructions.
 - Make sure the components are aligned correctly before tightening, and that they are ‘relaxed’ (not bound, twisted, pulled, pushed, or tensioned to get them to fit). This should hold true
through the whole assembly. One part out of alignment or ‘bound’ at one point will affect other component functionality downstream.

The plates in some areas are adjustable to assist with alignment (Figure 31).

![Figure 28](image)

o Keep all components loose until you know they are aligned properly. Hand-tighten components first, then alternate back and forth between the end components when tightening to the specified values.

o Keep gaps even when tightening bar or collar clamps by alternating back and forth between the screws when tightening.

• Replace any high-pressure components that are damaged.

Shear-Screw Replacement

In the event of a hard nozzle crash, the three A-Jet shear screws are designed to break away and reduce damage to other critical components inside the assembly.
These shear screws need to be replaced whenever damaged or the machine faults due to a head crash. To replace these screws, refer to the OMAX document, 400716, **A-Jet Shear-Screw Replacement Procedure** for instructions.
A-Jet Inlet Body and Pull to Open Valve Rebuild

This section details the repair of the OMAX A-Jet Inlet Body and Pull to Open valve. These components require rebuild or replacement whenever water begins leaking from either the nozzle tip or the nozzle weep hole.

Rebuilding the A-Jet Pull to Open Valve

Follow these procedures to replace the stem in the A-Jet Pull to Open valve. Do not disassemble any other parts of the air actuator assembly. Disassembly of the air actuator will compromise the actuator functionality. If the assembly quits working, it cannot be repaired and must be replaced.

Note: Ensure that all the General Maintenance Procedures, page 12, have been followed before proceeding.

Remove the Air Actuator

Follow these steps to remove the air actuator from the A-Jet inlet body.

Note: DO NOT remove the inlet body during this portion of the rebuild. Removing it will require A-Jet recalibration.

1. Disconnect the air lines from the air actuator and twist the push-in fittings to point up, allowing enough clearance for the assembly to be rotated.
2. Loosen the **air actuator** from the **inlet body**. Unscrew the **air actuator** and then carefully pull it straight out of the **inlet body**.

 ![Wrench](image1.png)

 1-1/8 in.

 Caution: Always lift the **air actuator** straight out from the **inlet body** to avoid damaging the **stem**.

3. Move the **air actuator** to a clean work area for rebuilding.

 ![Air Actuator](image2.png)

 Figure 35

 Figure 36

Rebuilding the Air Actuator Assembly

Follow these steps to replace the **stem** in the **air actuator assembly**

1. Loosen but do not remove the **Air Actuator** set screw.

 ![Set Screw](image3.png)

 Figure 37
2. Remove the small **snap ring** that holds the **stem assembly** in place.

![Figure 38](image)

3. Remove and discard the **stem** from the **air actuator**.
4. Place a new **stem** into the **air actuator**.

![Figure 39](image)

5. Replace the small **snap ring** that secures the **stem** to the **air actuator**.

![Figure 40](image)

Note: Following insertion of the snap ring, always tug out on the stem to ensure it is held firmly.

Disassembling the Inlet Body

Follow these steps to remove the internal components from the A-Jet inlet body.

1. Insert the **retaining screw removal tool** (see Figure 42) into the top of the **inlet body** and rotate it until the tool slips onto the **retaining screw**.
2. Unscrew the **retaining screw** with the removal tool.
3. Insert the on/off valve service tool into the bottom of the inlet body and push it up to remove the loosened retaining screw, the backup ring, the seal, the seal support, and the seat from the inlet valve body.

Rebuilding the Inlet Body

Follow these steps to rebuild the internal components of the A-Jet inlet body.

1. Push the on/off valve service tool up through the bottom of the empty inlet body and place the seat on the end of the tool with the chamfer edge down.

2. Slowly pull the service tool out of the inlet body with the seat attached until the seat rests flat at the bottom of inlet body. Remove the service tool completely from the inlet body.
Note: To assure the seat remains oriented correctly, use a small Allen wrench to hold the seat against the tool as the service tool is pulled out. Also, you should do a visual inspection using a flashlight to ensure the seat has not flipped over.

Figure 44

3. Insert the seal support (either end) into the inlet body to rest on top of the seat.

Figure 45

4. Apply a thin layer of Blue Goop onto the threads of the retaining screw.

Figure 46

5. Slide the remaining inlet body components onto the service tool as illustrated below: the retaining screw (threads away from tool handle), the backup ring assembly (notch away from tool handle), followed by the seal assembly (O-ring side away from the tool handle):
6. Lubricate the seal assembly components using Lubriplate

![Coat seal assembly with Lubriplate](image)

Figure 47

7. With your finger holding the inlet body components up against the service tool handle, insert the tool with components into the top of the inlet body, then push all components deep into the inlet body.

![Service tool with installed components](image)

Figure 48

8. Remove the service tool from the inlet body, leaving all components in place.

9. Thread the retaining screw into the top of the inlet body (Figure 50):

![Retaining screw tool](image)

Figure 49

Attaching the Air Actuator

Follow these steps to attach the rebuilt air actuator to the inlet body.

1. Apply a thin coat of Lubriplate onto the air actuator stem.
2. Insert the air actuator stem into the inlet body. Thread the air actuator onto the inlet body.
3. Torque the **air actuator**. (Show new A-Jet wrench icon if we have one.)

![Image of air actuator](image)

| 1-1/8 in. | 18.8 ft-lb
| 25.4 N·m |

4. After installing the **air actuator**, ensure that the **air fittings** do not make contact with the **A-Jet** frame during operation.

![Image of air actuator and fittings](image)

Note: **Tighten the air actuator set screw until snug** (Figure 52). **If the actuator cover has rotated causing the air fittings to make contact**, loosen the set screw and reposition the cover so that contact is no longer possible. Gently tighten the set screw with the cover pulled all the way up.

5. Attach the **air hoses** to the air actuator’s **air fittings**.

![Image of air hoses](image)

6. Flush the system and perform leak tests per instructions provided on page 13, step 13, **Flush the machine after maintenance**.
7. Insert the nozzle ring seal assembly into the inlet body (seal end first) followed by the last chance screen.

![Image of nozzle ring seal assembly and last chance screen]

Figure 53

Note: When installed in the nozzle body, the ring seal and filter screen should be flush with each other.

8. Apply a thin coat of Blue Goop onto the threads on both the inlet body and nozzle assembly.

![Image of Blue Goop]

9. Re-install the large O-ring (if removed) onto the nozzle body.

10. Slide the splash guard over the nozzle assembly, aligning the abrasive inlet hole to the slot in the splash guard.

![Image of nozzle assembly and splash guard]

11. Thread the nozzle assembly onto the inlet body and tighten per MAXJET 5i installation procedures.
12. Insert the **abrasive feed tube** through the **splash guard** and into its **nozzle opening**.

![Figure 54](image)

13. Recalibrate the **A-Jet** using the **The A-Jet Squareness Calibration Wizard** and precision calibrate if applicable.

Troubleshooting

Pull to Open Valve Leaking Following Rebuild

Inspect the inlet body from underneath the A-Jet to locate the weep hole. Water leaking from this weep hole indicates either the seal was installed incorrectly or was damaged during installation.
A-Jet Tilt Nipple Replacement and Swivel Rebuild

This section details the rebuild of the high-pressure collared swivel, and replacement of the A-Jet tilt nipple. The collared swivel requires seal replacement whenever water leaks from the swivel seals are detected. The A-Jet tilt nipple (P/N 307841) requires inspection/replacement whenever large quantities of water leak from the A-Jet collared swivel.

Verifying Causes of Leaks

Caution: Water leaks can appear to be coming from the A-Jet swivel, when, in fact, they are caused by loose high-pressure fittings, joints, or plugs. To avoid rebuilding the A-Jet swivel unnecessarily, always ensure that the swivel is actually leaking, especially when leaks occur early in the life of the A-Jet. Use the steps which follow to help rule out other causes.

- Retighten, realign, and inspect all A-Jet high-pressure joints to ensure they are not the source of the leak. Repair any problems noted and recheck for leaks.
- Ensure that the nipple set screw plug is seated correctly and tightened securely (see Figure 58 for location).
- Ensure that the swivel keeper is in place and securely tightened.

WARNING! Never high-pressure test the A-Jet with the swivel keeper removed (Figure 58). If the nipple has a broken piece in the swivel assembly, that piece could fly out with extreme force.

Note: Water from a leaking screw plug will not exit through the threads but through the weep hole identified in Figure 58.
• If water exits through the set screw plug weep hole, remove and reinstall the set screw plug. When tightening the screw plug, it should go in easily until it stops. At that point, it can be tightened another 1/4 to 1/2 turn. If a lot of drag is felt while tightening the screw but it can still be turned with a moderate force more than 90 degrees, there may be a problem with the threads. Remove the screw and inspect the threads for damage.

• When all logical troubleshooting steps have been followed, and it appears that the swivel seals are actually the problem, call OMAX Technical Support for additional information, or proceed with the following A-Jet swivel rebuild procedures.

Rebuilding the A-Jet Collared Swivel

Follow these steps to replace the seals in the A-Jet high-pressure collared swivel.

Note: *Ensure that all the General Maintenance Procedures, page 12, have been followed before proceeding.*

Removing the Swivel from the A-Jet Assembly

1. Disconnect the two **air hoses** and **abrasive feed tube** from the **molded cover** housing the **swivel**.

![Figure 59](image)

2. Remove the single cover **mounting screw** and carefully pull back (do not lift up) the **molded cover** exposing the **swivel** and **internal hoses**.

![Figure 60](image)

3. Disconnect the **internal hoses** from the **hose fittings** inside the **molded cover**.

4. Remove the **molded cover**.
5. Remove the two M8 screws holding the swivel collar.

Caution: Use the wrench to stabilize the clamp and prevent twisting the A-Jet as you loosen the screws.

6. Push back the manifold from the swivel body to expose the ‘football’ nipple (Figure 62) connecting the manifold with the swivel body. Use care to avoid the electrical cables. If the cable sheath is cut, water can leak into the actuator.
Caution: If the manifold is removed from the bent nipple, realignment of the bent nipple is required.

![Diagram of manifold and swivel]

Figure 63

7. When the football nipple no longer makes contact with the swivel, pull the swivel up, removing it from the tilt nipple.

![Diagram of football nipple and tilt nipple]

Figure 64

8. Remove the football nipple, clean, inspect and set it aside to ensure it does not get lost. If damaged, replace it. A blast of air may be used to aid nipple removal.

Caution: Do not damage the ends of the football nipple.

9. Move the swivel body to a clean work area for disassembly and rebuild.

Rebuilding the A-Jet Swivel

1. Remove the four screws holding the swivel keeper to the swivel body.

![Diagram of screws and swivel keeper]

Figure 65

2. Place the swivel body in a vise (not soft jaws) with the flat side of the swivel against the flat jaw of the vise and tighten it securely to allow removal of the hollow set screw.
Note: The hollow set screw is held in place with #2760 Loctite®. You may need to use a breaker bar to remove it. Do not use heat!

![Figure 66](image)

Note: If the vise jaws are unable to hold the swivel tight enough, the vise pipe jaws can be used for a tighter grip.

3. Push the seal pack ejector tool into the swivel (non-threaded hole) to remove the internal seals (2 ea.), back up rings (2 ea.) and swivel cage.

![Figure 67](image)

4. Clean the swivel body of all debris, oil and grease.

5. Inspect the bore of the swivel body for scratches or other damage. If you can feel a scratch, or any other damage, replace the swivel body.

Reassembling the A-Jet Swivel

1. Locate the two seal packs in your swivel rebuild kit:

![Figure 68](image)

Caution: Do not drop the backup ring. If the sharp edge (flat end) is damaged, discard and replace with a new backup ring.

2. Apply Lubriplate to the two O-rings and then mount each onto a seal as illustrated in Figure 69.
3. Install each seal kit component in the swivel body exactly as follows:

Note: Component will be inserted into the swivel body one at a time using the push tool. This prevents the seals from being pulled out as the push tool is removed.

a. Place the slider onto the push tool as shown in Figure 70. Slide the first backup ring onto the push tool next to the slider with the chamfer side facing away from the slider.

b. Place the swivel body on the workbench with the threaded side facing up.

c. Hold the backup ring and slider (Figure 72) in place on the push tool with your finger. Then insert the slider and backup ring into the swivel body until the top of the slider is flush with the swivel body.
Caution: *Use care to not damage the backup ring's flat face and sharp edge!*

d. Hold the push tool slider next to the swivel body while pulling the tool out of both the swivel body and slider. Then, remove the slider, leaving the backup ring in place:

![Figure 73](image)

Figure 73

e. Again, place the slider onto the push tool and slide an O-ring seal assembly onto the push tool next to the slider with the flat side of the seal facing away from the slider.

![Figure 73](image)

f. Insert the push tool slider and the O-ring seal assembly into the swivel body until the top of the slider is flush with the swivel body (Figure 73).

g. Hold the slider next to the swivel body while pulling the tool from both the swivel body and slider. Then, remove the slider, leaving the O-ring seal assembly in place:

![Figure 73](image)

h. Place the slider back onto the push tool and slide the cage onto the push tool next to the slider.

![Figure 73](image)

i. Insert the slider and the cage into the swivel body until the top of the slider is flush with the swivel body (Figure 73).

Note: *The cage is bidirectional.*

j. Hold the slider next to the swivel body while pulling the tool from both the swivel body and slider. Remove the slider, leaving the cage in place:

![Figure 73](image)
k. Place the slider onto the push tool again and slide an O-ring seal assembly onto the push tool next to the slider with the flat side of the seal facing toward the slider.

l. Hold the O-ring seal assembly and slider in place on the push tool and insert the push tool slider and O-ring seal assembly into the swivel body until the top of the slider is flush with the swivel body.

m. Hold the slider next to the swivel body while pulling the tool from both the swivel body and slider. Remove the slider, leaving the O-ring seal assembly in place:

n. Place the slider back onto the push tool and slide the remaining backup ring onto the push tool with the chamfer side facing toward the slider.

o. Hold the backup ring and slider in place on the push tool and insert the push tool slider and backup ring into the swivel body until the top of the slider is flush with the swivel body.

p. Hold the slider next to the swivel body while pulling the push tool from both the swivel body and slider, leaving the backup ring in place:

4. Remove the slider.
5. Remove any excess Lubriplate from the threaded area of the swivel body.
6. Coat the threads of the hollow set screw with Loctite 2760, Figure 74.

Caution: Do not drip Loctite into the swivel body.
7. Screw the hollow set screw into the swivel body hand tight.
8. Place the swivel body into the vise and tighten.
9. Wipe off the excess Loctite from the hollow set screw and swivel body.
10. Add one bead of Lubriplate around the hollow set screw cavity to aid mounting the swivel body back onto the A-Jet assembly.

Replacing the A-Jet Tilt Nipple
If removing or replacing the A-Jet tilt nipple, continue from here.

WARNING! The swivel keeper must be replaced each time a nipple break repair is made.

Note: Verify the tightness of the pull to open valve to ensure the inlet body remains in place during nipple replacement.
1. Remove the two **M8 screws** holding the **tie bar** in place.

 ![Figure 77](image)

2. Push up on the **tilt nipple** in the **swivel body**, then pull the **tilt nipple** free from the **inlet body** allowing the **tie bar** to be rotated to one side and pulled from the **swivel** and out of the **housing**.

 ![Figure 78](image)

3. Remove the **tie bar** and **collet** from the removed **tilt nipple**.

 ![Figure 79](image)

4. Discard the **tilt nipple** being replaced.

5. Apply Blue Goop to the **threads** of the new **tilt nipple**.
6. Slide the tie bar on and thread the collar onto the new tilt nipple assembly. Ensure the beveled side of the tie bar screw holes face toward the inlet body. Leave at least one thread between the collar and the inlet body.

7. Prepare a 2.0 in. length of tubing used for protection and alignment of the tilt nipple during installation as follows:
 a. Cut out a notch from one end of the tubing (Figure 82).
 b. From the middle of that notch, cut a slit in the tubing from one end to the other.
8. Apply a thin coating of Lubriplate to the tilt nipple end that will insert into the swivel body.

![Figure 83](image)

9. Slide the protection tubing, notched end first, onto the lubricated tilt nipple with the bend of the nipple curving up into the tubing’s notch.

![Figure 84](image)

10. If present, remove any old protection tubing from the A-Jet assembly and discard it.

![Figure 85](image)

Caution: The tubing protects the nipple assembly from surface scratches, etc. Even a small scratch can cause the swivel seals to leak. It also aids in aligning the new nipple assembly.

Caution: Do not push the protection tubing in all the way. Leave a minimum of a half inch sticking out, allowing it to be grabbed and removed later in these instructions.

11. Line the nipple up with the cone in the inlet body and position the tie bar with the screw holes in the A-Jet frame.
Caution: *Avoid damaging the end of the cone. This will ruin its water seal.*

12. Apply a light coating of **Blue Goop** on both tie bar screw threads and insert the two screws into the tie bar. Hand tighten at this time.

13. Verify that the nipple and inlet body cone remain in proper alignment while the two screws are being tightened.

14. Slowly begin tightening the two tie bar screws evenly by rotating between screws, being careful to keep the space between the tie bar and the inlet body even on both sides.

Caution: *Tightening one end of the tie bar more than the other results in uneven pressure applied to the nipple and cone resulting in a faulty water seal.*

15. Ensure that the inlet body has not rotated during tightening and the tilt nipple and inlet body cone remain correctly aligned.

16. Once the tie bar screws are hand tight, rotate the tilt motor back and forth. Observe the exposed end of the nipple (swivel end) and verify the nipple does not move left or right. If it does, readjust the tie bar so there is no or minimal side-to-side movement of the nipple as the tilt motor is rotated.
Note: Some front to back movement may be observed. This is because the bend of the nipple may not be exact. If excessive front to back movement is observed, contact OMAX Technical Support.

17. Remove the protective tubing from the nipple assembly.
18. Apply a thin coat of Blue Goop to the conical surfaces of the football nipple and re-insert it into the manifold.

![Figure 89](image)

19. Apply Lubriplate to the tip of the tilt nipple.

![Figure 89](image)

20. Using a large flat-tip screw driver, push back the manifold to open enough space to enable mounting of the swivel body onto the A-Jet bottom nipple (see page 32 for an example).

![Figure 90](image)

21. Rotate the swivel body until its flat side becomes parallel to the face of the manifold.

Caution: Ensure that the bottom nipple protrudes slightly above the surface of the swivel body. Refer to Figure 58, page 29, for an illustration of the correct amount of insertion.

![Figure 90](image)

22. Apply Blue Goop to the threaded area and under the head of the two M8 screws. Position the swivel body collar onto the swivel body and insert the two M8 screws through the collar and into the holes in the manifold. Hand tighten at this time.
23. Begin tightening the two M8 screws slowly, a little at a time to apply an even pressure on both sides of the collar until the swivel is held securely in place and remains parallel to the manifold. If threads and heads are clean and lubricated with Blue Goop, tighten until you reach 140 in-lb (15.8 N·m). If the threads are not clean and lubricated, you may need to tighten the screws more (up to between 180 - 190 in-lb (20.3 - 21.5 N·m) maximum.

Caution: The swivel should sit down on the funnel cover. If it does not, the seal will be damaged by the cross port or the weep hole in the tilt nipple.

Caution: The gaps at either end of the manifold must be parallel and evenly tightened to avoid leaks. The alignment of the swivel to the manifold needs to be fairly close for the football nipple to seal properly.
24. Mount the **swivel keeper** onto the top of the **swivel body** using the four **M4 screws**.

![Figure 94](image)

25. Reconnect the **air lines** to both the inside and outside of the **cover**.

Note: *Do not install the molded cover over the swivel at this time. Wait until completion of the following leakage test.*

WARNING! *Never high-pressure test the A-Jet with the swivel keeper removed. If the nipple has a broken piece in the swivel assembly, that piece could come flying out with extreme force.*

26. Remove the blocking material and tools from beneath the **nozzle** and position the **A-Jet** vertically in preparation for nozzle tests.

Testing the A-Jet Swivel for Leaks

Follow the procedure provided on page 13, step 13, to ensure that the nipple was successfully replaced and works without leaks.

Final Assembly

1. Ensure that the OMAX equipment is powered **OFF**.

WARNING! *Never work on the A-Jet with the OMAX power ON.*

2. Carefully coil the **air hoses** around the **swivel**.

![Figure 95](image)
Caution: Ensure that the hose connected to the inside fittings match the color of the hose attached on the outside of the molded cover.

3. Push the abrasive feed tube through the grommet opening at the top of the molded cover.
4. Carefully slide the molded cover in place and secure it using the single mounting screw at the bottom.
A-Jet Abrasive Feed Tube Replacement

This section details the replacement of the abrasive feed tube inside the OMAX A-Jet. The abrasive feed tube requires replacement when normal abrasive wear weakens its walls causing the tubing to collapse or allows air to be sucked in resulting in erratic abrasive flow.

Figure 97

Replacement Parts Required

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasive Feed with Sleeve Assembly</td>
<td>1 ea.</td>
<td>302240</td>
</tr>
</tbody>
</table>

Tools Required

Refer to Tools Required, page 11, and verify that all tools required for replacing the A-Jet abrasive feed tube are available.

Getting Started

Completely read these procedures prior to replacing your A-Jet abrasive feed tube to ensure you fully understand the rebuild requirements and have all the required parts and tools available.

1. Clear the OMAX table of materials and other debris to allow sufficient room for the A-Jet disassembly.
2. Position the A-Jet at a location on the table that allows easy access both to it and the abrasive feed tube components.
3. Position the A-Jet head at its center position by squaring it to its hard stops.

Note: This unwraps the abrasive feed tube coiled inside the cover assembly.

4. Ensure that the main power, air, and water for the OMAX are turned OFF.

WARNING! Never do maintenance on your OMAX A-Jet with the main AC disconnect ON or unlocked. Always follow standard lockout/tag-out procedures.

5. Bleed off the residual air pressure from the system by allowing the on/off valve on the nozzle to open and ensure there is no stored energy (pressurized water) in the high-pressure lines.
6. Verify that you have all the parts and tools required to replace the A-Jet abrasive feed tube.
Replacing the A-Jet Abrasive Feed Tube

Note: Ensure that all the General Maintenance Procedures, page 12, have been followed before proceeding.

1. Tilt the A-Jet to a position making the splash guard accessible.
2. Remove the splash guard clamp bar by unscrewing the two M4 screws and cutting the tie wrap.

![Figure 98]

3. Remove the splash guard by unscrewing the 2.5mm screws with plastic covers. Pull the splash guard off the 3mm screws with metal stand-offs.

Caution: Do not remove the shear screws. Remove only the screws securing the splash guard.

![Figure 99]

4. Remove the mounting screw that holds the molded cover in place. Disconnect the 2 air hoses from inside the cover. Disconnect the abrasive feed tube from the nozzle. Cut the tie wrap securing the abrasive feed tube. Pull the abrasive feed tube from the nozzle assembly and through the molded cover, then pull it through the articulated arm.
5. At the top of the A-Jet assembly, remove the two screws holding the clamp bar at the top of the swivel assembly.

![Figure 100](image)

6. Remove the swivel assembly by unscrewing the bottom gland nut on the high-pressure plumbing. **Caution:** Use the swivel spanner wrench to support the swivel assembly as you loosen the gland nut.

![Figure 101](image)

![Figure 102](image)
7. Remove the **collet**, **collar**, **gland nut** and **black boot** from the **high-pressure nipple**.

 ![Figure 103](image)

8. Remove the six top **screws** securing the **cap** to the A-Jet **cylindrical cover**.

 ![Figure 104](image)

 Caution: *These are short screws that come out quickly and are easily dropped.*

9. Remove the six bottom **screws** securing the **base** of the A-Jet to the **cover**.

 ![Figure 104](image)

 Note: *The bottom cover screws have washers; the top screws do not.*

10. Cut and remove the **tie wrap** from around the **cable assembly** going into the **cap** of the A-Jet **cover**.

 ![Figure 105](image)
11. Raise the A-Jet cap to expose the inside of the A-Jet body.

Figure 106

12. Pull the old abrasive feed tube out the top of the A-Jet cap until it is completely removed.

Figure 107

13. Disconnect the abrasive feed tube from the hopper and pull it out of the bottom slot of the Y-carriage.

Figure 108

14. Replace the abrasive feed tube and sleeve with your new one.

15. Feed the end of the abrasive feed tube with the 26 in. of uncovered tubing exposed through the molded cover’s grommet from the inside.

Figure 109
16. Secure the splash guard clamp bar using the two M4 screws (Figure 110).

17. Continue to feed the line through the air line/feed line hole in the splash guard clamp bar. Insert the smaller tubing into the end of the abrasive feed tube then insert it into the nozzle body.

18. Position the clamp bar and adjust the length of the abrasive feed tube to the nozzle body.

19. Secure the feed line to the end of the clamp bar using a tie wrap.

Caution: Adjust the tie wrap tight enough to hold the abrasive feed tube in position, but not so tight that it restricts the abrasive flow.

20. From inside the molded cover, route the abrasive feed tube over the swivel assembly and through the articulating arm on the right side of the swivel assembly as shown below.

21. Reattach the two air hoses to the fittings on the inside of the molded cover as shown below:

22. Install and secure the molded cover using the single Phillips screw removed in step 5 above.
Caution: *Slide the molded cover horizontally into place; do not drop it down into position. Ensure that the two air lines are routed below the swivel assembly and do not get in the way as the molded cover is slid into place.*

![Image of molded cover and mounting screw](image)

Figure 113

23. Rotate the **tilt-head** to various positions between the **hard-stop** extremes to verify that sufficient slack exists in the **hoses** to prevent them from binding or causing flow restrictions.

![Image of hoses not overly stretched](image)

Figure 114

24. Continue to run the **abrasive feed tube** up into the **rotary motor assembly**.

![Image of abrasive feed tube and rotary motor assembly](image)

Figure 115

Note: Secure the **air hoses**, and **abrasive feed tube** by tucking a tie wrap underneath and then back around the **high-pressure line**. Do not include the **high-pressure line** or the **yellow hose** in the tie wrap. Then feed the tie wrap back up and around all **cables** and **hoses** before connecting the tie wrap. Slide the tie wrap to where the **high-pressure line** bends.
Note: The yellow hose should not be included in the tie wrap.

25. Tighten the tie wrap. Do not over tighten and compress the abrasive feed tube, etc.

26. Install the splash guard onto the A-Jet axial assembly.

27. Attach the bottom of the A-Jet body cover to the mounting frame using the six Phillip head screws and washers removed in step 9.

28. Insert the abrasive feed tube up the A-Jet cylinder body and through the body cap.
29. Rotate the A-Jet **head assembly** from **hard-stop** to **hard-stop**, while preventing **body cap** from rotating. This action will draw in the **abrasive feed tube** from the top as it wraps around the **high-pressure tubing** inside the **cylinder cover**. Assist the **abrasive feed tube** as it’s drawn into the **cylinder**.

Note: You may want to put a cap screw in place to help hold the cap in place during this process.

Caution: *Allow sufficient abrasive feed tube to be pulled inside the A-Jet body during rotation to prevent it from becoming wrapped so tightly that it binds and constricts abrasive flow. Do not feed the Teflon sleeving down into the actuator. It needs to remain inside of the A-Jet body.*

30. Lift the A-Jet **body cap** and look down inside the **cylinder** when the **rotary axis** is against each **hard-stop**. Ensure that the **feed line** is not binding or constricting other components inside.

![Figure 119](image)

31. Install the A-Jet **top cap** to the body cover using the Phillip head screws removed in step 8.

Caution: *Tighten the top screws snug only. The threads can be easily stripped or damaged if over tightened.*
32. Install a tie wrap through the sleeving and around only the braided rotary cable at about 1.0 in. above the cord grip and then feed it down as illustrated:

![Figure 121]

33. Continue running the abrasive feed tube up and through the coiled nipple loop.

![Figure 122]

34. Run the abrasive feed tube down to the bottom of the Y-carriage and place it inside the bottom slot on the Y-carriage.

![Figure 123]

35. Insert the end of the hose into the abrasive valve at the bottom of the hopper.
Caution: Ensure that you have enough abrasive feed tube length to reach the hopper with the A-Jet Z-axis lowered.

Figure 124

36. Clean and apply Blue Goop to the gland nut, collet, and collar and place them onto the rotary nipple.

Figure 125

37. Place the swivel assembly onto the rotary nipple and thread the gland nut in place. Using the spanner wrench and open-end wrench, tighten the swivel assembly in place.

Figure 126

38. Replace the clamp bar and nipple at the top of the swivel. Replace and tighten the two clamp bar screws.

Caution: Ensure that these two screws are evenly tightened by going back and forth from one to the other until the clamp bar is adequately tightened.
Testing the A-Jet Swivel and Abrasive Feed Tube

Follow these steps to ensure that the abrasive feed tube was successfully replaced and now provides good abrasive flow.

1. Remove the nozzle assembly.
2. Run the water and abrasive tests checking for leaks around the plumbing.
3. Verify that garnet flows adequately through the abrasive feed tube.
5. Run various test cuts to verify success of the abrasive feed tube replacement.
Customer Support
Refer to the OMAX.com website for detailed Customer Service information.