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Abstract Systematic spatial variations of anisotropic characteristics are revealed beneath the
eastern U.S. using seismic data recorded between 1988 and 2016 by 785 stations. The resulting fast
polarization orientations of the 5613 measurements are generally subparallel to the absolute plate motion
(APM) and are inconsistent with the strike of major tectonic features. This inconsistency, together with
the results of depth estimation using the spatial coherency of the splitting parameters, suggests a mostly
asthenospheric origin of the observed azimuthal anisotropy. The observations can be explained by a
combined effect of APM-induced mantle fabric and a flow system deflected horizontally around the edges
of the keel of the North American continent. Beneath the southern and northeastern portions of the study
area, the E-W keel-deflected flow enhances APM-induced fabric and produces mostly E-W fast orientations
with large splitting times, while beneath the southeastern U.S., anisotropy from the N-S oriented flow is
weakened by the APM.

1. Introduction

As a nearly ubiquitous characteristic of the Earth’s upper mantle, the azimuthal dependence of seismic
velocities, i.e., azimuthal anisotropy, has been investigated for decades by numerous studies, mostly using
shear wave splitting (SWS) analyses [e.g., Francis, 1969; Leven et al., 1981; Mainprice and Nicolas, 1989;
Silver and Chan, 1991; Gao et al., 1994; Savage, 1999; Yang et al., 2014, 2016]. In particular, splitting of P-to-S
converted phases (SKS, SKKS, and PKS, hereafter collectively called XKS) from the core-mantle boundary is
among the most frequently employed structural seismological techniques to determine mantle anisotropy
beneath the stations. Two parameters, including the fast orientation (𝜙, which is the polarization orienta-
tion of the fast wave) and the splitting time (𝛿t, which is the time difference between the fast and slow
waves), are measured to quantify the anisotropy orientation and strength, respectively. The resulting mea-
surements have an excellent lateral but limited vertical resolution [Silver and Chan, 1991; Savage, 1999;
Liu and Gao, 2013], although under some ideal conditions, the depth of the source of anisotropy can be
estimated with reasonable confidence using the spatial coherency of the splitting parameters [Gao and
Liu, 2012].

Laboratory experiments and geodynamic modeling studies indicate that lattice preferred orientation (LPO)
of the crystallographic axes of olivine is the most likely cause of mantle anisotropy [Zhang and Karato, 1995;
Becker et al., 2006]. The geodynamic implications of SWS observations are complicated by the fact that there
is more than one mantle process that can lead to the LPO. For continental areas such as the eastern United
States (EUS) that are away from active plate boundaries, the most likely processes include (1) simple shear
originated from vertical flow gradient in the asthenosphere which leads to an anisotropy parallel to the
flow direction, (2) lithospheric compression resulting in fast orientations consistent with the strike of the
mountain belts [Silver, 1996, 1999; Fouch and Rondenay, 2006; Long and Silver, 2009; Refayee et al., 2014],
and (3) magmatic diking in the lithosphere that can lead to an observable dike-parallel seismic anisotropy
[Gao et al., 1997, 2008, 2010; Walker et al., 2004; Kendall et al., 2005]. Therefore, elucidating anisotropy-forming
mechanisms for a given area is essential not only for understanding the origin of seismic anisotropy but
also for characterizing past or current deformational processes in the mantle especially the existence and
direction of mantle flow systems. The diverse tectonic features in the EUS and the recently recorded high-
quality broadband seismic data make this area an ideal locale for in-depth investigations of seismic azimuthal
anisotropy.
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Figure 1. Map of the study area showing mean P wave velocity anomalies for the depth range of 100–200 km
[Burdick et al., 2014], major tectonic boundaries (brown lines), seismic stations (red dots) with one or more nonnull
measurements from this study, and station-averaged shear wave splitting measurements (red bars) from previous
studies [Barruol et al., 1997; Fouch et al., 2000; Rondenay et al., 2000; Eaton et al., 2004; Frederiksen et al., 2006; Long et al.,
2010; Wagner et al., 2012; Long et al., 2016]. The orientation of the bars represents the fast orientation, and the length
of the bars indicates the splitting time. Black circles show stations at which only null SKS splitting measurements were
detected by Long et al. [2016], suggesting the absence of significant azimuthal anisotropy beneath the stations.

1.1. Tectonic Setting
The EUS, which is defined here as the land area of 67∘W to 90∘W and 24∘N to 50∘N (Figure 1), has experi-
enced extension and compression of continental margins involving successive terrane accretions, orogenies,
and continent breakup [Thomas, 2006; Whitmeyer and Karlstrom, 2007]. Main tectonic provinces include the
Yavapai (1.9–1.7 Ga), Mazatzal (1.8–1.6 Ga), Grenville (1.3–1.0 Ga), and the Appalachian (0.26 Ga) [Karlstrom
and Bowring, 1988; Whitmeyer and Karlstrom, 2007] (Figure 1). The Yavapai and Mazatzal provinces were
related to accretion of juvenile volcanic arcs to the cratonic core [Hoffman, 1988], while the Grenville and
Appalachian provinces were associated with the construction and breakup of Rodinia and Pangea [Thomas,
2006; Whitmeyer and Karlstrom, 2007; Yuan et al., 2014].

Seismic tomographic studies suggest that the thickness of the lithosphere beneath the stable part of the
North American Craton is 220–250 km and thins eastward to about 100–200 km at the Appalachian front
[e.g., van der Lee et al., 2008; Yuan and Romanowicz, 2010]. Mostly due to the eastward thinning of the
lithosphere, the average upper mantle P wave velocities relative to the 1-D AK135 reference model reduce
systematically toward the edges of the continent (Figure 1) [Burdick et al., 2014].

1.2. Previous Shear Wave Splitting Studies in the EUS
Numerous SWS studies in the EUS have been conducted since the early 1990s (Figure 1) [e.g., Vinnik et al.,
1992; Barruol et al., 1997; Fouch et al., 2000; Frederiksen et al., 2007; Long et al., 2016], with significantly different
results at the same or nearby stations and different proposed mechanisms for the origin of the observed
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seismic anisotropy. Barruol et al. [1997] reported mostly E-W fast orientations with larger than global averaged
splitting times of 1.0 s along the transition zone between the northern and central sections of the EUS. They
proposed that the local dominance of E-W mantle flow or/and fossil lithospheric deformation contributed to
the observed seismic anisotropy. Null splitting observations indicating the absence of significant azimuthal
anisotropy were found at two stations near the coast and were attributed to rifting-induced magmatic intru-
sion that would serve to weaken preexisting lithospheric fabric. A more recent study [Fouch et al., 2000]
proposed that the bulk of the observed anisotropy in eastern North America can be satisfactorily explained
by mantle flow around the keel of the continent. Keel-modified mantle flow was also proposed by Eaton et al.
[2004] based on SWS measurements at 24 stations.

Using Pre-USArray data, Long et al. [2010] and Wagner et al. [2012] showed a contrast in splitting behavior
between stations located in the Appalachian province and those located closer to the eastern coast, where
they observed null SKS splitting parameters indicating that beneath most of the stations, the crust and mantle
are overall azimuthally isotropic. They proposed that the difference in splitting patterns is consistent with a
transition from drag-induced asthenospheric flow beneath the North American Craton to vertical or incoher-
ent mantle flow. The most recent SWS study in the EUS [Long et al., 2016] used data recorded by the USArray
Transportable Array (TA) stations prior to August 2014, when most of the TA stations were still recording in
the eastern part of the study area. Similar to Long et al. [2010] and Wagner et al. [2012], Long et al. [2016] found
that the southeastern U.S. is dominated by stations with null SKS measurements (shown as black circles in
Figure 1) that are attributable to either vertical flow or vertically incoherent lithospheric anisotropy.

As shown below, the combination of the fact that only the SKS phase (rather than PKS, SKKS, and SKS) was used
and the short recording time at some of the stations might have resulted in limited azimuthal coverage of
the events used in previous SWS studies, preventing reliable identification of detectable azimuthal anisotropy
and leading to the conclusion of widespread existence of mantle azimuthal isotropy (Figure 1). In addition,
SWS measurements have not been obtained at about 100 stations in the EUS (Figure 1). This study represents
the final phase of a long-lasting effort to produce a uniform SWS database for the contiguous U.S. using data
recorded by both permanent and campaign-style (including the USArray TA) stations, for the ultimate goal
of providing critical constraints on the structural and geodynamic models of the Earth’s mantle beneath the
North American plate [Liu, 2009; Liu et al., 2014; Yang et al., 2016].

2. Data and Methods

Data used in this study were recorded by 785 broadband seismic stations (red dots in Figure 1) located in the
area of 24–50∘N and 90–67∘W archived at the Incorporated Research Institutions for Seismology (IRIS) Data
Management Center (DMC), including 497 stations from the TA and 288 from other networks. Seismograms
were recorded during a maximum period of about 28 years from late 1988 to May 2016, at which moment all
the USArray TA stations had finished recording in the EUS.

The detailed procedure for measuring and ranking the splitting parameters is described in Liu [2009] and
Liu and Gao [2013] and is briefly summarized below. The procedure is based on the minimization of transverse
energy technique [Silver and Chan, 1991]. Seismograms are extracted from events with a cutoff magnitude
of 5.6, which is reduced to 5.5 for earthquakes with focal depths deeper than 100 km. To ensure that all the
usable XKS signals are included in the study, the epicentral distance range for PKS, SKKS, and SKS used for data
requesting is 120–180∘, 95–180∘, and 84–180∘, respectively [Liu and Gao, 2013], although the vast majority
of the events have an epicentral distance in the range of 90–130∘ (Figure 2a, inset). An initial band-pass filter
with corner frequencies of 0.04 and 0.5 Hz is applied to all the seismograms.

The final stage of the procedure is to manually verify the results and adjust (if necessary) the measuring
parameters, including the beginning and end of the XKS window and the band-pass filtering frequencies, for
each of the measurements by visually checking the quality of the original and corrected radial and transverse
components, the waveform fit between the resulting fast and slow components, the linearity of the corrected
particle motions, and the significance and uniqueness of the minimum value point on the contour map of
the energy of the corrected transverse component (Figure S1 in the supporting information). The resulting
SWS measurements are grouped into Quality A (outstanding), B (good), C (unusable), and N (null: strong XKS
energy on the radial but no observable XKS energy on the transverse component) quantitatively based on
the signal-to-noise ratio on the original and corrected radial and transverse components and the uniqueness
of the minimum energy peaks [Liu et al., 2008].
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Figure 2. (a) Station-averaged (black bars) fast orientations from this study plotted at the stations. The background image shows the absolute difference
between the fast orientation and the APM direction computed at each of the stations. Red arrows show the APM direction [Gripp and Gordon, 2002], and the
red lines divide the area into nine regions. The 556 earthquakes used in the study are shown as red circles (whose size is proportional to the number of Quality A
or B measurements that the event produces) in the inset azimuthal equidistant projection map, in which the concentric circles indicate the epicentral distance
from the center of the study area with an increment of 45∘. (b) Spatial distribution of the resulting splitting times.

3. Results

A total of 5613 pairs of nonnull SWS measurements is obtained at 785 stations, including 1187 from PKS,
928 from SKKS, and 3498 from SKS (Table S1 and Figure S2). The total number of nonnull measurements pro-
duced by this study is about 10 times that reported by the most recent SWS study for the EUS [Long et al.,
2016], which used only the SKS phase from the TA stations recorded prior to August 2014. Another possible
reason for the difference in the number of nonnull measurements (and the pervasive null-stations reported
in the latter) might be related to the different band-pass filtering frequency ranges, which is 0.04–0.5 Hz
for this and 0.02–0.125 Hz for the other study. The low frequencies make it difficult to detect splitting with
a 𝛿t of 0.5 s or smaller [Long et al., 2016]. The simple mean of the splitting times is 0.98 ± 0.31 s which is
equivalent to the global average of 1.0 s for continents [Silver, 1996], while the circular mean for the fast orien-
tations is 67.5±24.3∘ (or 247.5∘ measured clockwise from the north) which is almost identical to the absolute
plate motion (APM) direction of 246–253∘ for the EUS in the fixed hot spot model [Gripp and Gordon, 2002].
The station-averaged measurements are shown in Figure 2, and the individual and station-averaged splitting
parameters can be found in the supporting information as Tables S1 and S2, respectively. (Note that wave-
form and other related plots similar to those shown in Figure S1 for all the 5613 measurements can be found
at http://www.mst.edu/%7Esgao/YangEUS, which will be merged with the IRIS DMC Data Product that we
produced for the western and central U.S.: http://ds.iris.edu/ds/products/sws-db-mst/).

We visually check the resulting splitting parameters for each of the stations to search for systematic azimuthal
variations to identify potential existence of significant complex anisotropy [Silver and Savage, 1994] and
conclude that a one-layer anisotropy model with a horizontal axis of symmetry is sufficient to explain the
vast majority of the observed splitting parameters. This conclusion, however, does not exclude multiple layer
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models with parallel or perpendicular fast orientations. In addition, due to the fact that all the stations with
reliable XKS arrivals on the radial component have one or more nonnull XKS splitting measurements, null
measurements are not reported because they simply reflect the fact that the back azimuth of the events and
the fast orientation are nearly parallel or orthogonal to each other [Silver and Chan, 1991; Liu and Gao, 2013].
To facilitate data presentation and interpretation, in the following we divided the study area into nine regions
(Figure 2b), based on the tectonic setting and the characteristics of the splitting parameters

3.1. Regions A1–A3
Regions A1–A3 are situated on the Early Proterozoic basement west of the Grenville Front. Only a small frac-
tion of the stations have previously reported SWS measurements, and Long et al. [2016] observed a set of
null-dominated stations in Regions A2 and A3 (Figure 1). The mean splitting times for the three regions are
0.91–0.95 s, which are smaller than the global average of 1.0 s and are consistent with those observed on the
western part of the stable North American continent using the same procedure [Yang et al., 2016]. While the
majority of the fast orientations are within 20∘ from the APM, larger deviations are found in the Great Lakes
area. The fast orientations observed in the eastern part of A1 and A2 as well as those in the NE corner of A3
are mostly E-W, which is also the dominant orientation for the other northern regions (B1 and C1). Most of the
fast orientations are at a large angle with the strike of the major terrane boundaries (Figure 2a).

3.2. Regions B1 and B2
Regions B1 and B2 are in the Mid-Proterozoic Grenville Province. The fast orientations in B1 are mostly E-W or
NW-SE, and those in B2 are mostly parallel to the APM direction. The transition from mostly E-W fast orienta-
tions to NE-SW ones takes place gradually along the boundary between B1 and B2, over a distance of about
200 km. Large splitting times are found in the NE corner of Region B1.

3.3. Regions C1–C4
Regions C1–C4 belong to the Appalachian province. The fast orientations in C1 are almost consistently E-W,
which is approximately in agreement with the APM but nearly 45∘ from the dominantly NE-SW strike of the
Appalachians. This region has the largest splitting times in the entire study area.

Splitting parameters observed in Region C2 are anomalous in terms of the dominantly N-S fast orientations
that are not observed in other regions and the small splitting times which might be partially responsible for
the widespread null measurements reported by previous studies [e.g., Long et al., 2010; Wagner et al., 2012;
Long et al., 2016].

Region C3 is the southernmost part of the Appalachians. The splitting times are comparable to the global
average, and the fast orientations are subparallel to both the APM and the main strike of the Appalachians.
One interesting observation is that while the strike of the Appalachians changes by about 30∘ at about
37–38∘N latitude, no corresponding changes are found in the observed fast orientations.

The resulting fast orientations in the western part of Region C4 are mostly E-W. The large splitting times
and the E-W fast orientations are consistent with those observed along the Texas coastline [Refayee et al.,
2014]. The fast orientations make a gradual NE-SW turn in the eastern part of this region.

4. Discussion
4.1. Depth of the Anisotropic Layer
The numerous spatially varying splitting parameters observed at densely spaced stations make the study area
an ideal locale to apply the spatial coherency approach [Gao et al., 2010; Liu and Gao, 2011] for estimating
the depth of the center (weighted by the degree of anisotropy if it is unevenly distributed vertically) of the
anisotropic layer for each of the nine regions. The resulting optimal depth corresponding to the minimum
variation factor ranges from about 140 km beneath Region C1 to 240 km beneath A1 (Figure 3). On average,
there is an eastward shallowing of the estimated depths, which is consistent with the eastward decrease of
seismic P wave velocities [Burdick et al., 2014] (Figure 3c). The resulting depth estimates, when compared
with the thickness of the lithosphere proposed by previous seismic tomographic studies [van der Lee, 2002;
Li et al., 2003; Yuan and Romanowicz, 2010], suggest that the observed anisotropy is mostly from the upper
asthenosphere. This conclusion of mainly asthenospheric origin is consistent with that obtained in the central
U.S. based on the same spatial coherency procedure [Refayee et al., 2014; Yang et al., 2014].

While contributions from lithospheric fabric to the observed anisotropy cannot be completely ruled out,
the following observations imply that lithospheric contributions to the observed azimuthal anisotropy are
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Figure 3. Anisotropy depth analysis for the nine regions using a bin size of 0.2∘ [Gao and Liu, 2012]. (a) Curves of the
variation factors. (b) The resulting depth for each region. (c) The upper mantle mean velocity anomaly relative to
the AK135 model for each of the nine regions [Burdick et al., 2014].

insignificant: (1) there is a large angular difference between the fast orientations and the dominant strike of
most of the major tectonic boundaries and features in many of the areas (Figures 1 and 2a), (2) the largest
splitting times are observed in areas with thin lithosphere in the study area (e.g., C1 and C4), (3) there is no
significant increase in the splitting times along major terrane boundaries (Figure 2b, in which most of the area
boundaries are the same as the tectonic terrane boundaries shown in Figure 1). Such an increase is expected
if the degree of anisotropy positively correlates to compressional strain, and (4) the estimated depth of the
center of the anisotropic layer discussed above is greater than the tomographically derived thickness of the
lithosphere.

If the observed anisotropy is a combination of deformation in the asthenosphere and lithosphere, as proposed
by some of the previous studies, a two-layer anisotropic structure is present, which produces azimuthally vary-
ing splitting parameters with a 90∘ periodicity (with the exception of the situation that the fast orientations
of the two layers are consistently parallel or orthogonal to each other). Such an azimuthal variation is not
observed, and thus, the SWS observations are mostly from a single layer of anisotropy (or multiple layers with
approximately parallel or orthogonal fast orientations) in the upper asthenosphere.

4.2. Keel-Deflected Mantle Flow and APM-Induced Anisotropy
Some of the most recent seismic tomographic studies [e.g., Burdick et al., 2014] suggest that a large portion
of the eastern margin of the North American cratonic keel, which tilts toward the continental interior on the
vertical plane, is not parallel to the NE-SW strike of the coastline but instead is mostly N-S oriented (Figure 1).
On the horizontal plane, the strike of the keel makes a sharp turn in the northern part of the study area and
becomes mostly E-W, as exemplified by one of the recent tomographic images (Figure 1) [Burdick et al., 2014].
The SWS observations can be well explained by a simple model involving both APM-induced fabric and a
mantle flow system deflected horizontally around the lateral edges of the keel of the North American Craton
[Fouch et al., 2000; Refayee et al., 2014; Yang et al., 2014]. We propose that the APM-induced flow system (Vc) is
mainly developed in the transitional layer between the partially coupled lithosphere and the asthenosphere
and is present beneath the entire area, while the horizontally deflected flow system exists only beneath the
cratonic edges and goes around the keel (Figure 4). Note that both flow systems are relative to the solid
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Figure 4. Schematic diagrams showing possible flow fields
(relative to the lithosphere) responsible for the generation
of the observed anisotropy. (a) An E-W vertical section
across the entire northern or southern portion of the
study area with dominantly E-W fast orientations and
larger-than-normal splitting times. VC represents simple
shear in the transitional layer between the partially coupled
lithosphere and asthenosphere, and VA is a system of
asthenospheric flow traveling horizontally around the edges
of the cratonic keel beneath the transitional layer. (b) Same
as Figure 4a but for a profile traversing the area with mostly
N-S fast orientations and reduced splitting times in the SE
U.S. Note that similar anisotropic characteristics can be
obtained if all the flow vectors reverse their direction.

lithosphere. Studies suggest that the lithosphere-
asthenosphere boundary (LAB) beneath the por-
tion of the study area with thick cratonic mantle
lithosphere is represented by a gradual change over
a vertical distance of 70 or more kilometers, and
that the LAB beneath thinner lithosphere could be
as gradual as 30–40 km [Abt et al., 2010; Fischer
et al., 2010]. Simple shear in this transitional layer
of the two rheologically different zones can pro-
duce significant anisotropy [McKenzie, 1979; Conrad
and Behn, 2010]; for instance, a layer of 100 km
with an average anisotropy of 4% can produce the
observed splitting times of 1 s. The keel-deflected
flow system, on the other hand, is most likely in the
low viscous asthenosphere beneath the transitional
layer (Figure 4).

This model attributes the dominantly APM-parallel
fast orientations observed in the cratonic interior
to the simple shear induced by the relative motion
between the lithosphere and asthenosphere along
the APM direction. In contrast, the nearly E-W fast
orientations and the large splitting times observed
along the southern and NE portions of the study
area are due to a combined effect of keel-deflected
mantle flow and APM-induced fabric, which are
approximately consistent with each other (with an
∼20∘ or less difference; Figure 4a). Finally, the model
attributes the mostly N-S fast orientations and the
small splitting times observed in the southeastern
U.S. (Region C2) to the canceling effect of the
approximately N-S oriented keel-deflected flow
and the E-W oriented APM-induced anisotropies

(Figure 4b). It has long been recognized that in a two-layered system of anisotropy of orthogonal fast ori-
entations, the combined fast orientation of the system is that of the layer with the larger splitting time, and
the combined splitting time is the difference between the splitting times of the two layers [Silver and Savage,
1994]. Therefore, the fact that the resulting fast orientations are mostly N-S suggests that anisotropy from
keel-deflected flow is stronger than that associated with APM-related fabric.

It must be pointed out that results from SWS analyses alone cannot unambiguously reveal the directions
(relative to the lithosphere) of the flow systems. For instance, a westward moving plate on top of a station-
ary or eastward moving asthenosphere plus a mostly eastward deflected flow system (except for the SE U.S.
where it moves northward) can produce the main characteristics of the observed anisotropy (Figure 4), as dis-
cussed above. Similarly, a westward moving flow system beneath the plate together with a mostly westward
deflected flow system (except for the SE U.S. where it moves southward) can also produce the observed
pattern of anisotropy. The key to distinguish these models of plate dynamics is to conduct geodynamic
modeling by taking into account of the true geometry of the LAB and accurately determined velocity and
density models, and by using other geophysical observations such as shear wave splitting measurements as
constraints.

5. Conclusions

By utilizing all the available broadband seismic data recorded in the EUS prior to May 2016 including those
from the USArray TA stations, we have revealed systematic spatial variations of seismic azimuthal anisotropy
at 785 stations. The observations can best be explained by the combined effects of two anisotropy-forming
mechanisms, including APM-parallel simple shear developed in the transitional layer between the partially
coupled lithosphere and asthenosphere, and an asthenospheric flow system around the southern and eastern
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keels of the North American Craton. We propose that while the former is the dominating mechanism for the
APM-parallel anisotropy observed in the cratonic interior, the combination of the two deformation systems
creates the mostly E-W strong anisotropy along the southern and NE portions of the study area, as well as the
N-S oriented weak anisotropy observed in the southeastern U.S.
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