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Abstract SKS, SKKS, and PKS splitting parameters measured at 34 seismic stations that we deployed in
the vicinity of the Cenozoic Malawi Rift Zone (MRZ) of the East African Rift System demonstrate systematic
spatial variations with an average splitting time of 1.0 ± 0.3 s. The overall NE-SW fast orientations are
consistent with absolute plate motion (APM) models of the African Plate constructed under the assumption
of no-net rotation of the global lithosphere and are inconsistent with predicted APM directions from
models employing a fixed hot spot reference frame. They also depart considerably from the trend of most
of the major tectonic features. These observations, together with the results of anisotropy depth estimation
using the spatial coherency of the splitting parameters, suggest a mostly asthenospheric origin of the
observed azimuthal anisotropy. The single-layered anisotropy observed at 30 and two-layered anisotropy
observed at 4 of the 34 stations can be explained by APM-related simple shear within the rheologically
transitional layer between the lithosphere and asthenosphere, as well as by the horizontal deflection
of asthenospheric flow along the southern and western edges of a continental block with relatively
thick lithosphere revealed by previous seismic tomography and receiver function investigations. This
first regional-scale shear wave splitting investigation of the MRZ suggests the absence of rifting-related
active mantle upwelling or small-scale mantle convection and supports a passive-rifting process
for the MRZ.

1. Introduction

The Malawi Rift Zone (MRZ) initiated at ∼8.6 Ma with the synchronous onset of volcanism in the Rungwe
Volcanic Province at its northern terminus [Ebinger et al., 1989, 1993]. The Mbeya triple junction located
at the northern edge of the volcanic province acts as the nexus of the Nubian plate and the Victoria and
Rovuma microplates [Delvaux et al., 1992] (Figure 1). The spreading rate of the MRZ decreases progressively
toward the south [Calais et al., 2006], and the Rovuma Microplate is separating from the Nubian Plate along a
rift-perpendicular direction at rates of 2.2 mm/yr and 0.8 mm/yr at the northern and southern tips of the MRZ,
respectively [Saria et al., 2014]. Unlike most other segments in the Cenozoic East African Rift System (EARS)
and the Permo-Triassic Luangwa Rift Zone (LRZ), which largely developed in ancient orogenic belts that wrap
around the edges of relatively strong continental blocks [Chorowicz, 2005], the ∼800 km long, N-S oriented
MRZ traverses a complicated set of Precambrian crustal terranes separated by suture or shear zones with a
variety of orientations and is not following known preexisting orogenic belts [Craig et al., 2011; Fritz et al., 2013;
Laó-Dávila et al., 2015]. Accordingly, the initiation and evolution of this young continental rift are puzzling
[Huerta et al., 2009; Stamps et al., 2014] and have attracted numerous geoscientific investigations including
two recent large-scale interdisciplinary studies [Gao et al., 2013; Shillington et al., 2016].

One of the major seismological techniques frequently used to delineate mantle structure and dynamics is
shear wave splitting (SWS) analysis [e.g., Ando et al., 1980; Silver and Chan, 1991; Gao et al., 1994, 1997, 2010;
Yu et al., 2015], which measures seismic azimuthal anisotropy that is quantified by two splitting parameters,
including the polarization orientation of the fast wave (𝜙 or fast orientation which is measured clockwise from
north) and the time separation between the fast and slow waves (𝛿t or splitting time) which has a global aver-
age of 1.0 s [Silver, 1996]. The most commonly employed seismic phases for SWS analysis are P-to-S converted
phases at the core-mantle boundary on the receiver side, including PKS, SKKS, and SKS (hereafter collectively
referred to as XKS) [Silver and Chan, 1991].
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Figure 1. A digital elevation map of southern Africa demonstrating station-averaged shear wave splitting parameters produced by previous studies (black bars)
[Barruol and Ben Ismail, 2001; Silver et al., 2001; Walker et al., 2004; Bagley and Nyblade, 2013; Yu et al., 2015; Tepp, 2016] and this study (red bars). Thick dashed
magenta lines delineate plate boundaries from Stamps et al. [2008], and black arrows indicate the APM of the African Plate according to NNR-MORVEL56 [Argus
et al., 2011]. The red circle represents the Mbeya triple junction. MRZ, Malawi Rift Zone; LRZ, Luangwa Rift Zone. The inset shows the study area. VP, Victoria
Microplate; RP, Rovuma Microplate.

Numerous processes in the Earth’s interior are capable of generating measurable seismic azimuthal anisotropy
[e.g., Silver, 1996; Savage, 1999; Long and Silver, 2009]. In the asthenosphere, the most commonly invoked
mechanism for the formation of seismic anisotropy is the simple shear strain of olivine aggregates caused by
the movement of the lithosphere relative to the underlying asthenosphere, a phenomenon which increases
with plate age and relative velocity [Tommasi et al., 1996]. This simple shear induces dislocation slip and a
cumulative lattice-preferred orientation (LPO) that leads to observable azimuthal anisotropy with the fast ori-
entation parallel to the flow direction [Zhang and Karato, 1995]. Orogenic sutures and regional-scale faults,
both of which result in lithospheric vertically coherent deformation, can produce fast orientations that are
subparallel to the strike of the mountain chain or fault zone [Silver et al., 2001]. In areas such as continental rifts
that are dominated by extensional stresses, melt pockets and dikes in the lithosphere can lead to rift-parallel
fast orientations [Gao et al., 1997, 2010; Hammond et al., 2014].

REED ET AL. MALAWI RIFT SHEAR WAVE SPLITTING 1339



Tectonics 10.1002/2017TC004519

Figure 2. Azimuthal equidistant maps showing the spatial distribution of the (a) 42 PKS, (b) 51 SKKS, and (c) 73 SKS events that yielded at least one rank A or B
measurement in this study.

SWS observations in southern and eastern Africa have been reported by a number of groups using different
measuring techniques and data processing parameters (Figure 1) [Gao et al., 1997; Barruol and Ben Ismail,
2001; Silver et al., 2001; Walker et al., 2004; Bagley and Nyblade, 2013; Yu et al., 2015; Tepp, 2016]. The majority
of the 𝜙 measurements in southern and eastern Africa are NE-SW (Figure 1) with localized variations. With the
exception of the northern tip of the MRZ, the vast extent of the young rift has not been investigated using
SWS analysis. Here we provide SWS measurements using recently recorded broadband seismic data along
two profiles to quantify the orientation, strength, and layering of seismic anisotropy beneath the MRZ and
adjacent areas and to provide new constraints on mantle flow and rifting models.

2. Data and Methods

This study employs broadband seismic data recorded by 34 stations that we deployed in Malawi, Mozambique,
and Zambia over a 2 year period from June 2012 to June 2014 (Figure 1 and Table S1 in the supporting
information). The stations belong to the SAFARI (Seismic Arrays For African Rift Initiation) experiment [Gao et al.,
2013; Reed et al., 2016] (network code XK). Fifteen stations were situated in Malawi, seven in Mozambique,
and 12 in Zambia along an ∼900 km E-W and an ∼600 km N-S array (Figure 1). The stations are named by a
five-character string, with the first letter denoting the country name (Q for Mozambique, W for Malawi, and
Z for Zambia). It is followed by two digits that represent the station number within the country. The last two
letters represent the geographic location. If a station was moved to a different location, its new name retains
the first three characters, while the final two letters reflect the new site.

The epicentral distance of the events used in the study is 120–180∘ for PKS, 95–180∘ for SKKS, and 84–180∘ for
SKS, respectively [Liu and Gao, 2013]. The cutoff magnitude is 5.6 for events with focal depths shallower than
100 km and 5.5 for deeper events (Figure 2). The XKS waveforms are band-pass filtered using a Butterworth
four-pole two-pass filter with corner frequencies of 0.04 and 0.5 Hz, and events with an XKS signal-to-noise
ratio (SNR) less than 4.0 on the radial component are discarded. The optimal splitting parameters (𝜙 and 𝛿t)
for each event-station pair are subsequently grid searched using the procedure outlined in Liu and Gao [2013],
which seeks to minimize the XKS energy on the corrected transverse component [Silver and Chan, 1991]. The
XKS window used for the grid search is initially set to 5 s before and 20 s following the predicted IASP91 arrival
of the XKS phase.

Manual screening of each individual measurement is conducted to verify the reliability, as is indicated by the
SNR of both the original radial and transverse components, the goodness of matching between the fast and
slow components, the linearity of the corrected particle motion, the completeness of the removal of the XKS
energy on the corrected transverse component, the strength and uniqueness of the energy minimum on the
contour plot of the corrected energy, and the magnitude of the errors of the resulting parameters. If necessary,
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Figure 3. (a) Examples of PKS, (b) SKKS, and (c) SKS splitting measurements. For each XKS phase, (i) original E-N-Z
components, (ii) original and corrected radial and transverse components, (iii) fast (dashed) and slow (solid) components,
(iv) original (left) and corrected (right) horizontal particle motion, and (v) contour of corrected transverse energy with
the optimal pair of splitting parameters corresponding to the minimum transverse energy (black star).

modifications are made to the boundaries of the time window and the band-pass filter frequencies to improve

the above indicators. Rankings are initially assigned based upon the SNR of the original and corrected radial

and transverse components and are manually verified and, if necessary, adjusted accordingly. The rank-

ings include A (outstanding), B (good), C (poor), and N (null). Details of the ranking procedure are provided
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Figure 4. Station-averaged (thick red bars) and individual (thin purple bars) SWS measurements plotted at the stations and above the ray-piercing points at
200 km depth, respectively. For the four northernmost stations, results of two-layer fitting are also plotted, with the orange bars representing the parameters
for the lower layer and the green bars for the upper layer. The areas outlined by the green lines are the Luangwa and Malawi rift zones.

in Liu et al. [2008], and examples for the three XKS phases are shown in Figure 3 (plots similar to Figure 3
for all the 538 event-station pairs can be found in the rightmost column of http://www.mst.edu/%7Esgao/
MalawiSWS, while the leftmost column shows the individual measurements plotted against the back azimuth
of the events).

Figure 5. Station-averaged (a, c) fast orientations and (b, d) splitting times along the E-W (Figures 5a and 5b) and N-S
(Figures 5c and 5d) profiles computed using well-defined splitting measurements.
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Figure 6. Fast orientations plotted against the modulo-90∘ BAZ for each of the 30 stations showing insignificant periodic
azimuthal variations of the fast orientations. The green bar in each of the plots shows the station-averaged value.
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Figure 7. Observed splitting parameters at the four stations in the northern MRZ (dots) and theoretical splitting parameters (red lines) computed using the
results of grid searching under a two-layered model (𝜙=27∘ and 𝛿t=1.5 s for the lower layer, and 𝜙=69∘ and 𝛿t = 1.0 s for the upper layer). (a) Fast orientations,
and (b) splitting times.

3. Results

A total of 538 quality A or B measurements are obtained at 34 stations, including 81 PKS, 139 SKKS, and 318
SKS measurements (Figure 4 and Table S1). Due to the fact that nonnull measurements are observed for all
of the stations that recorded a reliable XKS signal, null measurements are not reported because they reflect
either the situation wherein the back azimuth (BAZ) of the event is parallel to the fast or slow orientation, or
when the XKS energy on the original transverse component is too weak relative to the noise, and thus is unable
to be observed visually [Liu and Gao, 2013]. Station-averaged fast orientations are calculated as the circular
mean of the individual 𝜙 measurements from the station, and station-averaged splitting times are the simple
mean of the individual 𝛿t measurements (Figure 4 and Table S2). The circular mean of all 538𝜙measurements
is 39±32∘, and the mean 𝛿t is 1.0±0.3 s. Figure 5 shows the station-averaged splitting parameters plotted
along both the E-W and N-S profiles.

To investigate the existence of 90∘ periodic azimuthal variations of the resulting splitting parameters against
the BAZ, which is a diagnostic feature of two-layered anisotropic structure with a horizontal axis of sym-
metry [Silver and Savage, 1994], we plot the splitting parameters against the modulo-90∘ of the BAZ, i.e.,
BAZ90 = BAZ −90(n − 1) where n = 1, 2, 3, 4 is the quadrant number (Figures 6 and 7), as well as against the
BAZ (Figure 8). Figures 7 and 8 show that a clear 90∘ azimuthal periodicity exists for four of the 34 stations. All
the four stations are located in the northern MRZ and have a similar pattern of azimuthal variation (Figures 7
and 8). Due to the limited back-azimuthal range, the existence of periodic azimuthal variation for several sta-
tions shown in Figure 6 (e.g., Q05ML, W06MQ, W15SS, and Z06GL) cannot be definitively determined. These
stations are categorized as single-layered based on the similarity of the splitting parameters with neighboring
stations in the single-layered group.

3.1. Rift-Orthogonal Profile
Significant and systematic spatial variations of the station-averaged splitting parameters are detected across
the E-W array (Figures 5a and 5b). An approximately 90∘ counterclockwise progressive rotation of 𝜙 is
observed among the stations west of 33∘E, ranging from about 70∘ at the westernmost station (Z01TG) to
about −20∘ at station W01PD (Figures 4 and 5). The fast orientations then establish a 50∘ clockwise shift,
producing a dominantly NE-SW orientation at station W02NB. The value of 𝜙 gradually rotates clockwise
toward the east and becomes approximately E-W at most of the stations in Mozambique (Figures 4 and 5).
The variation of the splitting times along the profile is less systematic, although stations with a NE-SW fast ori-
entation generally have larger-than-normal splitting times, while those with a more E-W fast orientation have
the smallest splitting times (Figures 5a and 5b). The mean splitting parameters for measurements along the
rift-orthogonal profile are 37±34∘ for 𝜙 and 0.99 ± 0.30 s for 𝛿t.

3.2. Rift-Parallel Profile
The splitting parameters observed at the four stations situated in the northern MRZ exhibit systematic
azimuthal variations with a 90∘ periodicity (Figures 7 and 8). The station-averaged 𝜙 values at these stations
are NE-SW, which is similar to the average over all of the 34 stations, but they possess large standard errors
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Figure 8. Azimuthal variation of individual 𝜙 measurements for each of the four northern MRZ stations. The best fitting
two-layer parameters are shown at the top of each plot, and the red curves are theoretical 𝜙 values calculated using the
best fitting parameters.

due to their azimuthal variations (Figure 5c). The maximum difference in 𝜙 among the individual events is 56∘

for W07CR, 79∘ for W08KB, 88∘ for W09TK, and 80∘ for W10LW. The rest of the stations in the rift-parallel profile
are characterized by a prevalent NE-SW station-averaged fast orientation, which is everywhere oblique to the
MRZ rift axis. The delay time from these 10 stations exhibits no discernible pattern relative to the southward
decreasing spreading rate of the MRZ [Saria et al., 2014]. The mean 𝛿t along this profile is 1.00 ± 0.30 s, which
is identical to the global average [Silver, 1996], and the mean 𝜙 is 55±24∘.

We next attempt to fit the azimuthal variation of the splitting parameters observed at the four northern MRZ
stations under a two-layered model with a horizontal axis of symmetry using the approach of Silver and Savage
[1994]. In order to reduce the well-known nonuniqueness of the resulting two pairs of splitting parameters
when measurements from individual stations are used, we take a two-step approach that is similar to what we
have recently utilized to constrain the two-layered structure in Tian Shan [Cherie et al., 2016]. For the first step,
we combine measurements from the four stations and perform a grid search of the two pairs of the splitting
parameters using a peak frequency of 0.25 Hz and weighting factors of 0.8 and 0.2 for 𝜙 and 𝛿t, respectively
[Gao and Liu, 2009]. The resulting splitting parameters are 27∘ and 1.5 s for the lower layer, and 69∘ and 1.0 s for
the upper layer. For the second step, the optimal splitting parameters for each of the layers are grid searched
by using the above splitting parameters as constraints. Specifically, for the lower layer, the search range is−20∘

to 50∘ for 𝜙, and 0.5–2.0 s for 𝛿t; for the upper layer, the corresponding ranges are 0∘ to 90∘ and 0.5–2.0 s.
The resulting two-layered model for each of the four stations is shown in Figure 8. The 𝜙 for the lower layer
ranges from 16∘ to 35∘ and that for the upper layer ranges from 57∘ to 78∘.

4. Discussion
4.1. Anisotropy Layer Depth Estimation
Due to the steep raypath of the XKS phases, the vertical resolution of the SWS technique is low. In this section,
we estimate the depth of the center of the anisotropic layer by applying a method that utilizes the spatial
coherency of splitting parameters [Gao and Liu, 2012; Liu and Gao, 2011] employing measurements from the
30 stations with data that are representative of simple anisotropy (Figure 6). The procedure dictates that the
optimal depth of the anisotropic layer will correspond to the minimum spatial variation factor (Fv), which is a
function of the sum of the weighted standard deviations (i.e., the variation factors) of both the𝜙 and 𝛿t values
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Figure 9. Contour of apparent depths of the 410-km discontinuity (black dashed lines) [Reed et al., 2016] and station-averaged splitting parameters from this
study (red bars with blue circles) and Tepp [2016] (red bars). Dashed white lines are major basement tectonic boundaries [Craig et al., 2011].

that are averaged over moving geographic windows (see Liu and Gao [2011], for an expanded description and
Gao and Liu [2012], for a detailed description of an open-access computer program). This technique requires a
decent BAZ coverage, densely spaced (e.g., 70 km or less) stations and gradual lateral variations in the spatially
varying simple anisotropy.

Similar to what has been utilized to estimate the depth of anisotropic layers elsewhere (e.g., Yang et al. [2017],
for the eastern United States and Yu et al. [2015], for the Okavango Rift Zone), we conduct a search for the
optimal depth of anisotropy within a vertical range from the surface to a depth of 400 km by computing the
Fv for each depth at an incremental step of 5 km. We employ this technique using two different geographic
window sizes: 0.25∘ × 0.25∘ and 0.45∘ × 0.45∘. These two window sizes are utilized in order to demonstrate
the overall variability within the resulting output. A minimum of two well-defined splitting measurements are
required within each window. The resulting optimal depths for the center of the layer of anisotropy beneath
our study area are found to range between 220 and 265 km for window sizes of 0.25∘ and 0.45∘, respectively
(Figure S1). A similar determination of the depth of anisotropy using SWS measurements in the vicinity of the
Okavango Rift Zone in Botswana [Yu et al., 2015] uncovered an optimal depth between 240 and 280 km.

4.2. Relationship Between SWS and Major Geological Features
The 34 SAFARI stations employed in this study are situated within a network of major lithospheric shear zones
and tectonic terranes [Craig et al., 2011] (Figure 9). While some of the 𝜙 measurements are consistent with
the local strike of the terrane boundaries, the vast majority are not. For instance, the structural trend of the
major tectonic boundaries in northern Mozambique is predominantly N-S (Figure 9) and is thus inconsistent
with the E-W fast orientations observed therein. In addition, with the exception of the several measurements
near the western boundary of the LRZ, most of the measurements in the vicinity of the MRZ and LRZ are not
parallel to the primary border faults which strike roughly parallel to the rifts (Figure 4) [Delvaux et al., 1992;
Banks et al., 1995; Fritz et al., 2013].
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Another argument against a significant lithospheric contribution is that such a contribution, together with
contributions from simple shear in the lithosphere-asthenosphere transitional layer described below, would
form a two-layered anisotropic structure [Yang et al., 2017]. This structure, unless the fast orientations of the
two layers therein are the same or 90∘ apart, would lead to systematic azimuthal variations of the splitting
parameters [Yang et al., 2017]. Such variations are not observed at most of the stations (Figure 6). Finally,
increases in the splitting times are not found near the terrane boundaries, which are locations of strain
localization and should correspond to larger splitting times if lithospheric fabrics dominate.

Therefore, while contributions to the observed anisotropy from fossil fabrics related to past tectonic events
cannot be completely ruled out, the inconsistencies between the observed fast orientations and the trend of
major tectonic features, and the lack of systematic azimuthal variations of the splitting parameters observed at
most of the stations (Figure 6), suggest that these contributions may not be sufficiently significant to account
for most of the observed anisotropy. A possible exception for this is in the vicinity of the LRZ (Figure 4), where
the parallelism between the fast orientations and the dominant strike of the western boundary of the LRZ may
indicate strong frozen-in lithospheric fabrics. If this is true, an interesting question for future investigations is
why preferably oriented lithospheric fabrics are preserved along some but not all ancient tectonic boundaries.

4.3. Relationship Between SWS and Models of Absolute Plate Motion
Many SWS observational and modeling studies attribute the observed azimuthal anisotropy to the simple
shear strain associated with absolute plate motion (APM) models [e.g., Becker et al., 2003, 2006; Liu et al., 2014],
and the most frequently utilized APM models are those constructed under the assumption of a fixed Pacific
hot spot reference frame such as HS3-NUVEL-1A [Gripp and Gordon, 2002]. This attribution is primarily due to
the fact that the majority of the observed fast orientations are subparallel to the predicted APM direction of
the tectonic plates, such as the North American Plate [Fouch et al., 2000; Becker et al., 2006; Liu et al., 2014; Yang
et al., 2017].

The correspondence between the observed fast orientations and those predicted by HS3-NUVEL-1A and other
models with a westward net rotation (NR) of the lithosphere [e.g., Conrad and Behn, 2010], however, breaks
down for the African Plate, where the predicted fast orientation is mostly E-W, while the observed fast orienta-
tions are N-S for northern Africa [Lemnifi et al., 2015; Elsheikh et al., 2014] and NE-SW for southern and eastern
Africa (Figure 1) [Silver et al., 2001; Yu et al., 2015; Tepp, 2016]. Meanwhile, most no-net rotation (NNR) APM
models [e.g., DeMets et al., 1994; Argus et al., 2011] as well as the surface-plate driven model of Conrad and Behn
[2010] predict a NE-SW fast orientation for the study area that is consistent with the observed fast orientations
(Figure 1).

These observations may suggest that at least in the vicinity of the MRZ and perhaps most of southern and
eastern Africa, the net rotation of the lithosphere does not produce significant simple shear in the upper
mantle, implying that the upper asthenosphere also has a westward net rotation of similar direction and
speed. Under this hypothesis, the apparent correspondence between the observed fast orientations and the
ones predicted using models with a net rotation component in some plates, such as North America, is the
result of the fact that the plate motions in both the NNR and NR frames are similar or are 180∘ apart. Thus,
at least for most part of Africa, NNR APM models such as NNR-MORVEL56 [Argus et al., 2011] are better poised
for comparison with SWS measurements relative to those developed under a fixed hot spot reference frame.

4.4. Lithospheric Modulation of Flow and APM-Induced Anisotropy
The absence of similarity between the observed fast orientations and the dominant strike of the major tec-
tonic features in most of the study area (Figure 1), the results of the estimation of the anisotropic layer depth,
as well as the overall consistency between the fast orientations and the APM direction suggest a primarily
asthenospheric origin of the observed seismic anisotropy. While a variety of potential models may exist, the
vast majority of the SWS observations can be explained by a simple model involving two deformation systems,
as recently proposed by Yang et al. [2017] for the eastern United States. The first system resides in the rhe-
ologically transitional layer between the “pure” lithosphere and “pure” asthenosphere. This layer represents
a gradual ∼100 km thick transition from the lithosphere to the asthenosphere beneath ancient continents
[Fischer et al., 2010]. Simple shear in this layer associated with the relative movement between the litho-
sphere and asthenosphere can induce APM-parallel anisotropy. The second system is related to horizontally
deflected flow in the asthenosphere along the edges of a region possessing relatively thick lithosphere. Such
a flow system has been used to explain SWS measurements along the southern [Fouch et al., 2000; Refayee
et al., 2014], western [Yang et al., 2014; Refayee et al., 2014], and eastern [Yang et al., 2017] edges of the stable
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North American continent. A detailed description of the model, together with a schematic diagram showing
the corresponding flow fields, can be found in Yang et al. [2017].

In our study area, the existence of a region with anomalously thick lithosphere intersecting the central MRZ
has been suggested by previous continental-scale surface wave tomographic studies [Priestley et al., 2008;
Fishwick, 2010], as well as by a recent receiver function study using the SAFARI data [Reed et al., 2016]. The
results of Priestley et al. [2008] reveal an area of thick lithosphere (where the thickness reaches 250 km) cen-
tered around the southern extent of the Victoria Microplate that thins progressively toward the south across
the Tanganyika, Rukwa, and Malawi rift segments of the EARS. The largest lateral gradient of the lithospheric
thickness is observed along an approximately E-W zone near the southern tip of Lake Malawi, where the
lithospheric thickness is about 175 km. In contrast, Fishwick [2010] reported a “tongue-shaped” E-W trending
zone of roughly 180–200 km thick lithosphere across the southern MRZ. These low-resolution (relative to the
receiver function study using body waves recorded by local stations [Reed et al., 2016]) surface wave tomo-
graphic observations are broadly consistent with an apparently shallower-than-normal 410 km discontinuity
(Figure 9) in conjunction with a normal mantle transition zone (MTZ) thickness observed beneath northern
Mozambique (Figure 9) [Reed et al., 2016]. As argued in Reed et al. [2016], the high velocities in the upper mantle
(i.e., above 410 km), which are associated with anomalously thick lithosphere, reduce the travel times of the
P-to-S converted phases relative to the IASP91 reference Earth velocity model, thereby leading to an apparent
(and thus, not real) uplift of both the 410 and 660 km MTZ boundary discontinuities. The E-W fast orientations
observed in Mozambique align perfectly with the E-W strike of the southern edge of the anomalous region
(Figure 9), the behavior of which is similar to edge-parallel fast orientations observed along the edges of the
North American continent. Based upon the MTZ measurements from Reed et al. [2016] that are illustrated in
Figure 9, the western edge of the anomalous region of lithospheric thicknesses is not as steep as the southern
edge, and thus, its influence on mantle flow (and, therefore, on the splitting measurements) may not be as
apparent. However, the approximately N-S 𝜙 measurements in eastern Zambia and western Malawi might
reflect the influence of flow deflection along the broad western edge of the anomalous region, within which
the MRZ has developed.

This model can explain both the single-layered and two-layered anisotropic structure. A single-layered struc-
ture is produced in the area with a relatively flat bottom of the lithosphere where edge-deflected flow is
insignificant. It also develops when the deflected flow overprints fabrics in the lithosphere-asthenosphere
transitional zone. This is likely the case for stations in Mozambique, eastern Zambia, and western Malawi.
In addition, a net single-layer structure forms when the fast orientations of the two systems are parallel
or orthogonal to each other. In the former case, the splitting time is the resultant sum of the individual
layer anisotropies, while in the latter, the observed 𝜙 is that of the layer with the larger splitting time.
On the other hand, if the two systems are at different depths and have nonparallel and nonorthogonal fast
orientations, a two-layered structure is produced. The two-layered structure observed at the four stations
in the northern MRZ (Figure 4) can be readily attributed to this model. While the nearly N-S oriented lower
layer anisotropy is related to edge-deflected flow in the asthenosphere, the approximately NE-SW upper layer
anisotropy roughly parallels the APM direction and thus may be related to simple shear developed within the
lithosphere-asthenosphere transitional layer.

It should be mentioned that, as suggested by previous geodynamic modeling and SWS observational studies
[Fouch et al., 2000; Yang et al., 2017], there is a 180∘ ambiguity in the direction of the flow systems. That is, rel-
ative to the lithosphere, an asthenospheric flow system moving toward the NE and being deflected eastward
(northward) by the southern (western) edge of the area with thick lithosphere can create the observed splitting
pattern in our study area. Meanwhile, a flow field toward the southwest can produce the same pattern.

4.5. Implications for Rift Initiation and Early Stage Development
The majority of the SWS measurements in the vicinity of both the MRZ and LRZ have a NE-SW orientation,
which is similarly observed at most stations in southern Africa (Figure 1). This spatial consistency suggests the
absence of a rift-parallel or rift-orthogonal small-scale flow system associated with rifting. It also implies the
lack of an upwelling or downwelling flow system, which would be expected to reduce the splitting times and
complicate the fast orientation pattern [Ribe and Christensen, 1994]. Although the results presented above
are consistent with the notion that most continental rifts develop through lateral variations of lithospheric
basal drag or resistive stresses along the edges of strong and thick continental blocks [e.g., Yu et al., 2015],
whether the magnitude of basal stress is sufficiently large to drive plate motion remains a debated topic
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[Bird et al., 2008; Ghosh and Holt, 2012; Stamps et al., 2015]. A recent geodynamic modeling study [Stamps et al.,
2015] suggests that the magnitude of such basal stresses in the vicinity of the EARS is roughly an order of
magnitude smaller than the deviatoric stresses associated with lithospheric gravitational potential energy
gradients. The upper mantle origin of rifting beneath the MRZ inferred from these observations and previous
geodynamic modeling studies [Stamps et al., 2015] is consistent with the lack of a high-temperature mantle
transition zone beneath the MRZ, and also with the recent realization that the MRZ is developing along the
edge of a continental block with relatively thick lithosphere [Reed et al., 2016]. Shear wave splitting and other
geophysical measurements recently obtained in the vicinity of the Okavango and Rio Grande rifts are also
consistent with this hypothesis [Yu et al., 2015; Gao and Liu, 2016]. Moreover, numerical models of passive
rifting in the EARS [Koptev et al., 2015] suggest that torque-induced rotation of the continental lithosphere
can achieve rupture absent high-magnitude far-field tensional stresses and without the presence of a viscous
plume in the upper mantle, which may represent the geodynamic environment in the vicinity of the MRZ.

5. Conclusions

A number of deductions can be made based on the shear wave splitting measurements obtained from 34
SAFARI seismic stations situated along two profiles of∼1500 km length in the vicinity of the MRZ. First, with the
exception of the area near the western boundary of the LRZ, the inconsistency between the observed fast ori-
entations and the dominant trend of the major geological structures, as well as the resulting ∼250 km depth
of the center of the layer of anisotropy, suggest that fossil fabrics in the lithosphere are not a significant con-
tributor to the observed anisotropy. Second, the large discrepancy between the observed anisotropy and that
predicted by APM models involving a lithospheric net rotation component implies that the upper astheno-
sphere also has a westward net rotation with similar magnitude. Third, the similarity between the observed
anisotropy and anisotropy predicted by no-net rotation APM models supports a model advocating the devel-
opment of LPO in the transitional layer between the lithosphere and asthenosphere. Fourth, areas with fast
orientations that are inconsistent with those predicted by NNR-APM models are mostly along the edges of an
area with a relatively thick lithosphere, implying horizontal deflection of flow in the asthenosphere. Finally,
this study provides additional evidence for the passive rifting model of the Malawi Rift Zone.
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