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Abstract The 410 and 660 km discontinuities (d410 and d660, respectively) beneath Alaska and
adjacent areas are imaged by stacking 75,296 radial receiver functions recorded by 438 broadband seismic
stations with up to 30 years of recording period. When the 1-D IASP91 Earth model is used for moveout
correction and time depth conversion, significant and spatially systematic variations in the apparent depths
of the d410 and d660 are observed. The mean apparent depth of the d410 and d660 for the entire study
area is 417 ± 12 km and 665 ± 12 km, respectively, and the mean mantle transition zone (MTZ) thickness
is 248 ± 8 km which is statistically identical to the global average. For most of the areas, the undulations of
the apparent depths of the d410 and d660 are highly correlated, indicating that lateral velocity variations
in the upper mantle above the d410 contribute to the bulk of the observed apparent depth variations
by affecting the traveltimes of the P-to-S converted phases from both discontinuities. Beneath central
Alaska, a broad zone with greater than normal MTZ thicknesses and shallower than normal d410 is imaged,
implying that the subducting Pacific slab has reached the MTZ and is fragmented or significantly thickened.
Within the proposed Northern Cordilleran slab window, an overall thinner than normal MTZ is observed and
is most likely the result of a depressed d410. This observation, when combined with results from seismic
tomography investigations, may indicate advective thermal upwelling from the upper MTZ through
the slab window.

1. Introduction

Subduction of the Pacific-Kula Plate beneath southern Alaska has occurred since at least 160 Ma (Fisher &
Magoon, 1978; Wang & Tape, 2014). Currently, the Pacific Plate subducts beneath Alaska at a rate of about
57 mm/yr in a northwestward direction (DeMets et al., 1990). The normal subduction beneath the Aleutian
trench changes to oblique beneath south central Alaska (Page et al., 1989). Based on the seismicity along
the Wadati-Benioff zone, the depth of the seismogenic section of the subducting slab is about 100–150 km
in south central Alaska and deepens to the west toward the central Aleutian, where it exceeds 300 km
(Figure 1) (Page et al., 1995; Taber et al., 1991). The subducting Pacific slab probably joins with the Yakutat
microplate along its eastern edge in the upper most mantle, but their relationship at greater depth is unclear
(Eberhart-Phillips et al., 2006).

The geometry and depth extent of the aseismic section of the subducted Pacific-Yakutat Plates have been
investigated by numerous seismic tomographic studies (Burdick et al., 2017; Martin-Short et al., 2016; Qi et al.,
2007; Wang & Tape, 2014; Zhao et al., 1995). One of the most significant features in many of the tomographic
images in central Alaska and along the Aleutians is a high-velocity zone striking NE-SW in the upper mantle
(Figure 2). While some earlier studies (e.g., Qi et al., 2007) limited this high-velocity zone to the upper mantle, the
most recent work (Burdick et al., 2017; Martin-Short et al., 2016) found it extending to the upper mantle tran-
sition zone (MTZ) (Figure 2), which is similar to findings from some of the global-scale tomography studies
(e.g., Li et al., 2008). Whether it also exists in the lower MTZ is unclear, due to limited vertical resolution of the
tomographic inversion techniques (Martin-Short et al., 2016).

Beneath the western Canadian Cordillera to the east and southeast of the Pacific-Yakutat slab assemblage,
geophysical and geochemical studies have recognized a gap in the subducted Juan de Fuca and Yakutat-Pacific
slabs, known as the Northern Cordilleran Slab Window (NCSW) (Figure 1) (Frederiksen et al., 1998; Thorkelson
& Taylor, 1989; Thorkelson et al., 2011). The abundant volcanism above the NCSW has been regarded as the
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Figure 1. A topographic relief map of the study area showing the distribution of seismic stations used in this study
(blue triangles) and contour lines of the depth of the subducting Pacific slab (red lines; the contour interval is 50 km)
(Gudmundsson & Sambridge, 1998). The purple dashed line in the central part of the mapped area shows the lateral
extent of the subducted Yakutat microplate, and the purple dashed line in the southeastern corner of the mapped area
indicates the southern edge of a slab window (Thorkelson et al., 2011). The black dashed line defines the western
boundary of the North American Craton (Yuan & Romanowicz, 2010).

consequence of the upwelling of anhydrous and hot asthenospheric mantle through the slab window
(Thorkelson et al., 2011). In this area, Frederiksen et al. (1998) imaged a low-velocity zone (LVZ) that reaches
600 km depth but could be exaggerated by 100 km or more due to vertical smearing. The P wave velocity
anomaly reaches to about −3%, with an upper mantle average of about −2% at the center of the tabular fea-
ture which is centered at approximately 136∘W by 60∘N. This feature was also reported by Qi et al. (2007),
but it is limited in the 0–400 km depth range, with an estimated average upper mantle Vp velocity anomaly
of −2%. Additionally, some continental-scale tomography studies (e.g., Schaeffer & Lebedev, 2014) show low
velocities down to about 400 km beneath western Canada. The considerable uncertainty about the depth
extent of this LVZ is also reflected in the recent tomographic studies shown in Figure 2 (Burdick et al., 2017;
Martin-Short et al., 2016).

The discrepancies in the resulting depth extent of the velocity anomalies beneath Alaska and adjacent areas
are most likely the result of a lack of sufficient raypath coverage and limited vertical resolution of the tomo-
graphic inversion techniques, as recently demonstrated by Foulger et al. (2015). Reliably determining the
depth extent of velocity anomalies especially their relationship with the MTZ discontinuities can provide
essential constraints on the formation mechanisms of both the high- and low-velocity anomalies. Whether
the slab segments remain only in the upper mantle, have reached the d410, have entered the MTZ and been
horizontally deflected by the d660 (Fukao et al., 2001), or have penetrated to the lower mantle are first-order
problems related to mantle structure and dynamics (Fukao et al., 2001; Goes et al., 2017). The depth extent and
geometry of subducted slab segments are closely related to the viscosity structure of the subducting slab
and the ambient mantle, the density increase across the bottom of the mantle transition zone, and the age
and associated density of the slab segments (Goes et al., 2017).

Numerous previous studies have demonstrated that the depth variations of the d410 and d660 can pro-
vide independent constraints on the depth extent of subducted cold slabs and high temperature anomalies
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Figure 2. (a–c) Vertically averaged upper mantle, upper MTZ, and lower MTZ P wave velocity anomalies from Burdick et al. (2017). (d–f ) Same as Figures 2a–2c
but from Martin-Short et al. (2016), which has data only in the area confined by the purple frame.

(e.g., Anderson, 1967; Collier et al., 2001; Contenti et al., 2012; Li & Yuan, 2003; Liu et al., 2016, 2003; Shearer
& Masters, 1992; Wicks & Richards, 1993; Yu et al., 2017). The d410 and d660 are ubiquitous and well estab-
lished in most global models and correspond to a globally averaged MTZ thickness of 250 km (Kennett &
Engdahl, 1991; Kennett et al., 1995). They are associated with mineral phase changes between 𝛼 olivine and 𝛽

olivine at 410 km (Ringwood, 1975) and from spinel to bridgmanite at 660 km (Ito & Katsura, 1989; Yamazaki &
Karato, 2001). Mineral physics experiments have indicated that the d410 and d660 have positive and negative
Clapeyron slopes, respectively (Bina & Helffrich, 1994; Helffrich, 2000; Katsura et al., 2003; Fei et al., 2004),
although the magnitude of the slopes is inconsistent among previous studies (see Ghosh et al., 2013 for a
summary). A thicker MTZ is expected in colder regions in the MTZ due to an uplifted d410 and depressed
d660, and hotter areas normally correspond to a depressed d410 and uplifted d660, leading a thinner than
normal MTZ (Helffrich, 2000; Ito & Katsura, 1989; Ringwood, 1975). In addition to temperature variations, the
existence of water in the MTZ plays a significant role in the depth of the mineral phase changes. Experimental
studies have shown that water has similar effects as low temperature on the topography of the d410 and d660
(Litasov et al., 2005; Smyth & Frost, 2002). An increase of about 1% in water content leads to an approximately
14 km increase in the MTZ thickness (Ohtani & Litasov, 2006).

The only existing MTZ study on a regional scale for Alaska was conducted by Ai et al. (2005), for the area of
−154∘ to−146∘E and 61∘ to 66∘N. Using teleseismic data recorded at 36 stations from different networks, 1804
receiver functions (RFs) were obtained and stacked in circular bins with a radius of 120 km. Their results show
a varied d410 and d660 topography, and an overall normal d410 and elevated d660, leading to a 20–30 km
thinning of the MTZ in most of the study area, which was attributed to a 100–200 K higher than normal MTZ
temperature (Ai et al., 2005).
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Figure 3. An azimuthal equidistant projection map centered at the study
area illustrating the distribution of earthquakes used in the study. Each
colored dot (radius = 1∘) represents the corresponding number of used
receiver functions from the earthquakes in that circle. Note the nonlinear
nature of the scale bar.

This study represents the spatially most extensive P-to-S receiver function
(RF) study for Alaska and adjacent areas, by taking advantage of the dra-
matically increased spatial coverage of high-quality broadband seismic
data recorded since the study of Ai et al. (2005), which covered approx-
imately 20% of the area investigated by this study. We aim to provide
constraints on the lateral and depth extents of the subducted slabs and
the LVZ by using about 42 times more RFs than the most recent previous
MTZ study for Alaska (Ai et al., 2005).

2. Data and Methods

The teleseismic data utilized in this study were obtained from the Incorpo-
rated Research Institutions for Seismology (IRIS) Data Management Center.
We requested all the available broadband seismic data recorded by seismic
stations in the area of 50∘N to 73∘N and −177∘E to −124∘E. The seismo-
grams were recorded by both portable and permanent stations including
95 stations from the recently deployed USArray Transportable Array (TA)
stations, for the recording period between early 1987 and late 2016. The
epicentral distance range for selecting the teleseismic events is 30∘ to 100∘,
and the cutoff magnitude of the events is computed using an empirical
formula that takes account of the epicentral distance and focal depth to
balance the quality and quantity of the requested data (Liu & Gao, 2010).

The procedure for data processing, selection, and stacking is described in
Gao & Liu (2014a, 2014b) and is briefly summarized here. The requested
seismograms were band-pass filtered using a four-pole, two-pass Bessel fil-
ter with corner frequencies 0.02 and 0.2 Hz. Testing using a higher-corner
frequency of 0.3 Hz led to almost identical results. All the filtered seismo-
grams with signal-to-noise ratios (SNR) of the first arrival≥ 4 on the vertical

component were converted into radial RFs using the frequency domain water-level deconvolution procedure
(Ammon, 1991; Clayton & Wiggins, 1976) with a water-level value of 0.03. An exponential weighting function
centered at the theoretical PP arrival is used to minimize the amplitude of the PP arrivals prior to RF calculation
for the purpose of minimizing the degenerating effect of the PP arrival. To ensure the quality of the results,
the resulting RFs are then subjected to an SNR-based selection procedure. A total of 75,296 high-quality RFs
from 5,311 events (Figure 3) recorded by 438 stations (Figure 1) was obtained.

We geographically divided the study area into circular bins with a radius of 1∘ (which is comparable to the
radius of the first Fresnel zone of the P-to-S converted phase at the MTZ depth), and the distance between
the center of the bins is 1∘ geographic degree, which corresponds to 111.2 km along the N-S direction and
from 40 to 70 km along the E-W direction depending on the latitude. For each bin, we moveout corrected
and stacked the RFs with piercing points in the bin at the depth of 535 km (the middle of the MTZ). An alter-
native approach is to group and stack the RFs based on the piercing point locations calculated at each of the
candidate discontinuity depths (e.g., Liu et al., 2003). This latter approach might lead to biased MTZ thick-
ness measurements in areas with strong upper mantle velocity heterogeneities such as the study area. This is
primarily because under such a RF grouping approach, some of the RFs sampling one discontinuity may not
sample the other. If some of those RFs travel through the area of upper mantle velocity heterogeneities, the
reliability of the resulting MTZ thickness can be reduced. The approach of grouping the RFs at the middle of
the MTZ used in this study ensures that for a given bin, the same RFs sampling both discontinuities also sam-
ple the same area in the upper mantle and consequently minimizes potential bias of strong upper mantle
velocity heterogeneities on the resulting MTZ thickness.

A nonplane wave assumption was used to predict the theoretical moveout times, which were computed using
the IASP91 Earth model (Kennett & Engdahl, 1991). The moveout-corrected RFs were converted into depth
series, for the depth range of 300–800 km with a vertical interval of 1 km. To ensure reliability, a bin was
not used if the number of RFs in the bin is less than 30 (Figure 4). A bootstrap resampling procedure with
20 bootstrap iterations was applied to determine the mean and standard deviation of the MTZ discontinuity
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Figure 4. Spatial distribution of the number of RFs in radius=1∘ bins. The red stars denote active volcanoes, and the
black circles indicate the center of the bins with MTZ discontinuity depth measurements.

depths (Efron & Tibshirani, 1986; Liu et al., 2003). The depth series were checked visually to reject traces with
weak arrivals.

3. Results

A total of 596 bins with prominent arrivals of either d410 or d660 was obtained. Among these bins, 536 and 505
possess clear d410 and d660 arrivals, respectively, and 445 have both reliable d410 and d660 arrivals. Figure 5
shows example cross sections of the resulting depth series for bins along two latitudinal lines and Figure S1
in the supporting information shows all of the 596 resulting depth series plotted along 24 latitudinal profiles
(from 50∘N to 73∘N with an increment of 1∘). Table S1 shows detailed information about each of the 596 bins,
including the location, resulting discontinuity depths and MTZ thickness, number of RFs, and the geographic
region that the bin belongs to.

3.1. Spatial Variation of the Apparent Discontinuity Depths
The resulting depth series reveal robust P-to-S conversions from the d410 and d660, which are most clearly
observed when the traces are sorted based on the apparent depths of the d410 (Figure 6a) or d660 (Figure 6b)
arrivals. On a small fraction of the time series, relatively robust multiple arrivals of the d410 or d660 are
observed. In such cases, we select the arrival that has a similar shape and depth with the nearby bins
(Figure S1). A continuous curvature surface gridding algorithm with a tension factor of 0.5 (Smith &
Wessel, 1990) is used to produce spatially continuous images for the observed d410 and d660 depths and
MTZ thickness (Figure 7), and areas with a distance greater than 1.5∘ from the nearest bin are masked.

Because a 1-D Earth model rather than a realistic 3-D model is used to produce the results shown in Figure 7,
the resulting depths of the d410 and d660 are apparent rather than true depths. The apparent depths are
functions of both the true depths of the discontinuities and velocity anomalies above the discontinuities.
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Figure 5. Depth series from stacking of RFs in radius = 1∘ bins along the (a) 60∘N and (b) 65∘N profiles. The circles
indicate the average depths of the d410 and d660 from bootstrap resampling, and the error bars show two standard
deviations of the depths. The number of RFs in each of the bins is indicated by the number atop each trace.

Velocity anomalies in the crust and upper mantle (i.e., above the d410) affect both the apparent depths of d410
and d660 almost equally and consequently lead to highly correlated apparent depth variations. High-velocity
anomalies artificially uplift both discontinuities, and vice versa. In contrast, anomalies in the MTZ only affect
the apparent depths of the d660. For the majority of the study area, the depths of the d410 and d660
are well correlated (Figure 8), suggesting that the observed spatial variations of the apparent depths are
mostly caused by lateral velocity heterogeneities in the upper mantle.
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Figure 6. (a) Resulting depth series for each of the bins with one or two observable MTZ discontinuities, plotted with
sequentially increasing depth of the d410. (b) Same as Figure 6a but for sequentially increasing depth of the d660.
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Figure 7. (a) Spatial distribution of apparent d410 depth measurements obtained using the 1-D IASP91 Earth model.
(b) Same as Figure 7a but for the d660. (c) Apparent MTZ thicknesses. For Figure 7c, values within ±5 km from the global
average are shown as white. (d) Division of the area into eight regions. Each region is indicated by differently colored
circles representing the center of the bins.

The mean apparent depths of the d410 and d660 for the entire study area are 417 ± 12 and 665 ± 12 km,
respectively, and the thickness of the MTZ ranges from 226 to 282 km with a mean of 248 ± 8 km, which is
almost identical to the normal value of 250 km in the IASP91 Earth model (Kennett & Engdahl, 1991). We divide
the study area into eight regions (Figure 7d) on the basis of the characteristics of the discontinuity depth
and MTZ thickness measurements as well as known mantle velocity and tectonic provinces. The averaged
apparent depths and thicknesses for each region can be found in Table 1.

Along the Aleutian Arc (Region A), the d410 is normal to slightly depressed with a mean apparent depth of
417±7 km, and the d660 is depressed with a mean of 670±12 km (Figure 7). The MTZ thickness in this region
ranges from normal to thicker than normal with a mean value of 255 ± 10 km. The western part of this area
shows an approximately 15 km thickening of the MTZ. Beneath southern Alaska (Region B), the MTZ thickness
is bipolar. It is about 8 km thinner than normal in the western half and is several kilometers thicker than normal
in the east.
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The area above the proposed NCSW (Region C) is featured by significantly
depressed d410 and d660, with mean apparent depths of 431±9 and 673±
9 km. The thinnest MTZ in this area is 229 km, which is 21 km thinner than
the global average of 250 km, mostly due to a greater apparent depression
of the d410 (Figure 7a) relative to that of the d660 (Figure 7b). Both the
d410 and d660 beneath western Alaska and adjacent areas (Region D) are
deeper than normal with spatially varying MTZ thicknesses. Due to the low
number of RFs (Figure 4), the results for this area have large uncertainties.

Central Alaska (Region E) is sufficiently sampled by the RFs (Figure 4) and is
characterized by apparently uplifted d410 and d660 for most of the area. In
this area, the MTZ thicknesses range from 240 to 282 km. Spatially, this area
is dominated by patches of thicker than normal MTZ thicknesses, except
for the southern margin, where a thin MTZ is observed (Figure 7c). Beneath
the Wrangellia Terrane and adjacent areas (Region F), the d410 and d660
are both normal, resulting in a normal MTZ thickness. Northern Alaska
(Region G) is featured by normal depth and thickness measurements. Like
Region D, the number of RFs per bin for this region is among the lowest
in the study area (Figure 4) and thus the thin MTZ observed in the central
part of this area may or may not be a real anomaly.

The North American Craton (Region H) is dominated by shallower than
normal apparent discontinuity depths, with mean values of 401 ± 5 and

646 ± 4 km for the d410 and d660, respectively, leading to a statistically normal mean MTZ thickness of
246 ± 6 km. The equal-amount apparent uplift of both discontinuities is consistent with the high-velocity
anomalies of the upper mantle that were mapped beneath this region (Qi et al., 2007).

3.2. Velocity-Corrected Depths
In order to convincingly convert the apparent depths obtained using the 1-D IASP91 Earth model discussed
above into true depths, accurately determined 3-D velocity models for both Vp and Vs with sufficient spatial
resolution for the crust, upper mantle, and MTZ are required. Results from the recent work of Martin-Short et al.
(2016), which is so far the only study that has utilized the newly recorded USArray TA data and simultaneously
obtained both Vp and Vs anomalies, are ideal for making the corrections but only for the central part of the area
investigated by this study (Figure 2). The procedure that we used here to make the corrections is identical to
that of Gao and Liu (2014b) used for correcting the MTZ discontinuity beneath the contiguous United States.
To perform the correction, 3-D P and S wave velocity anomalies are interpolated into layers of 10 km thickness
for the depth range of 0–700 km, and the average absolute velocity anomalies for each depth in each of the
bins are calculated. The apparent depths are converted into the true depths by applying equation (8) in Gao
and Liu (2014a).

Comparing the velocity-corrected depths (Figures 9a and 9b) with the apparent depths (Figures 7a and 7b),
it is clear that the overall magnitude of the depth undulations is reduced for most of the areas. However,

Table 1
Mean Measurements for the Eight Subregions

d410 𝜎d410 d660 𝜎d660 MTZ 𝜎MTZ

Region depth (km) (km) depth (km) (km) thickness (km) (km) No. of bins

A 417.1 7.1 670.1 12.1 254.6 10.3 50

B 418.4 6.3 666.6 6.8 247.7 7.4 59

C 431.3 8.6 673.2 8.7 242.6 4.8 62

D 426.3 6.5 674.1 5.5 247.8 8.1 72

E 406.6 12.6 660.2 12.6 252.2 8.0 67

F 412.0 9.3 661.1 9.9 247.6 5.1 38

G 413.9 7.1 662.4 5.5 247.1 7.2 46

H 400.5 4.6 646.2 4.4 245.6 5.5 51
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Figure 9. (a) Corrected d410 depth for the area covered by the study of Martin-Short et al. (2016). (b) Same as Figure 9a but for the d660. (c) Corrected MTZ
thickness measurements.

the corrected d410 and d660 depths are still positively correlated, with a correlation coefficient of 0.69.
Although this is smaller than the original value of 0.78, the positive correlation between the corrected depths
of the d410 and d660 possibly suggests that the magnitude of the velocity anomalies in the velocity models
is underestimated for the area.

4. Discussion
4.1. Implications for the Depth and Lateral Extents of Subducted Slabs
As demonstrated by numerous previous studies in the vicinity of modern or ancient subduction zones
(e.g., Contenti et al., 2012; Liu et al., 2003, 2016), the relationship between the depths (both the apparent and
corrected) of the two MTZ discontinuities and the MTZ thicknesses can provide valuable constraints to the
depth extent of cold slab segments and the existence of zones of high water content in the MTZ. For the study
area, seismic tomographic images have suggested the existence of cold slab segments beneath the Aleutians
and central Alaska (Burdick et al., 2017; Martin-Short et al., 2016; Qi et al., 2007; Zhao et al., 1995), with contra-
dictory conclusions about their depth of penetration. In this section, we speculate their depth extent using
the observed MTZ discontinuity undulations.

The presence of a cold slab only in the upper mantle (Situation A) leads to highly correlated apparent uplifts
of both discontinuities and a normal MTZ thickness. If the velocity correction is accurate, the apparent uplifts
of the discontinuities diminish, and the MTZ thicknesses remain normal. This is probably not the case for both
the Aleutians (Region A) and central Alaska (Region E), beneath which areas a thicker than normal MTZ is
observed (Figures 7c and 9c).

If a slab penetrates the upper mantle and the entire MTZ (Situation B), the resulting apparent and corrected
depths of the d410 are shallower than normal, due to both the higher upper mantle velocities and the lower
temperature in the upper MTZ which uplift the d410. The behavior of the d660, however, is dependent on
the competing effects of the higher upper mantle and MTZ velocities (which lead to an apparent uplift for
the d660) and the negative temperature anomaly at the bottom of the MTZ (which results in its depression
due to the negative Clapeyron slope). Previous MTZ discontinuity studies for other modern subduction zones
with confirmed existence of slabs in the lower MTZ showed that the temperature effect usually overcomes the
effect of higher velocities, leading to deeper than normal apparent depths of the d660 (Contenti et al., 2012;
Liu et al., 2003, 2016), which are not observed in areas with tomographically inferred slab segments.

A slab extending from the upper mantle to the upper MTZ (Situation C) leads to a greater apparent uplift
of the d410 than the d660, due to the thermal effect of the slab on the former. The low temperature is also
responsible for a thicker than normal MTZ. After the velocity correction, the depth of the d660 becomes nor-
mal and that for the d410 remains uplifted with a reduced magnitude relative to the apparent depth. For
central Alaska, although Situation B cannot be completely ruled out due to uncertainties in the accuracy
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of the velocity anomalies, our measurements fit Situation C, that is, cold slab segments are mostly concen-
trated in the upper MTZ, the best. This conclusion is consistent with both the recent tomographic studies
shown in Figure 2, in which only minor high-velocity anomalies are imaged in the lower MTZ. If this is the
case, the minor high-velocity anomalies in the lower MTZ might be due to vertical smearing (Frederiksen
et al., 1998; Martin-Short et al., 2016). Alternatively, this could indicate greatly reduced temperature contrast
between the slab segments and the ambient mantle. Unlike the mostly planar pattern of the slab in the upper
mantle shown in the tomographic images (Figure 2), the subducted slab seems segmented and spreading
over a broader area in the MTZ (Figure 7c), including directly beneath the trench in southern Alaska (eastern
half of Region B) and central Alaska (Region E). In addition, the thicker than normal MTZ beneath the Aleutians
(Region A) might be indicative of the existence of cold slab segments in the MTZ, which is consistent with
results from seismic tomography studies (Figures 2b and 2c) (Burdick et al., 2017).

While in principle the existence of hydrous mineral phases within the MTZ could affect the topography of
both MTZ discontinuities by uplifting the d410 and depressing the d660 (Ohtani & Litasov, 2006; Ghosh et al.,
2013), it is unlikely for the study area because (1) the presence of an anomalously large amount of water in the
MTZ should result in a reduction of seismic velocities, which is inconsistent with the most recent tomographic
studies (Figure 2), and (2) water should lead to a reduction of the amplitude of the d410 by broadening the
vertical distance for the olivine-spinel phase transition. Such a reduction is not observed for central Alaska
and the Aleutians (Figures 5 and S1).

4.2. Causes of the LVZ Above Slab Windows
One of the most prominent features in our results is the highly depressed d410 beneath the NCSW (Region C
in Figure 7). In the tomographic images of Burdick et al. (2017), the low velocities in this area are mostly limited
in the upper mantle, while Martin-Short et al. (2016) suggested that at least the NW part of this LVZ extends
to the lower MTZ (Figure 2f ). In this area, the maximum apparent depression of the d410 is located at 137∘W
by 58∘N, with an amplitude of 31 km. At the same location, the apparent depression of the d660 is 18 km,
leading to a 13 km apparent thinning of the MTZ. After velocity correction, the corresponding values are 26,
11, and 15 km, respectively (Figure 9). If we assume that the 15 km MTZ thinning is solely from the depression
of the d410, a 182 K thermal anomaly in the upper MTZ is required to produce the depression for an assumed
Clapeyron slope of 2.9 MPa/K (Bina & Helffrich, 1994). Using a scaling factor of dVp∕dT = −4.8×10−4 km s−1 K−1

(Deal et al., 1999), this temperature anomaly causes a−1% velocity anomaly, which is comparable to the value
reported by Martin-Short et al. (2016) (Figure 2e).

The observation that the upper MTZ is hotter than normal provides constraints on a number of previously
proposed models for the formation mechanism of this LVZ. First, as suggested by Frederiksen et al. (1998),
lithospheric collision-induced strain heating (Kincaid & Silver, 1996) cannot explain the LVZ, because it only
affects the temperature of the upper 100 km of the mantle. Second, the LVZ is unlikely to be related to a
mantle plume originating from the lower mantle, which is a frequently used hypothesis to explain upper
mantle low-velocity anomalies (e.g., Montelli et al., 2004). A plume origin of the Anahim volcanic track (which
is approximately located at about 125∘W and 52∘N) in the study area has been suggested (Mercier et al., 2009).
The plume model would predict a shallowing of the d660, which is not observed in the area covered by this
study (Figures 7b and 9c). However, the true depth of the d660 cannot be obtained at the present time for
the Anahim volcanic track area (Figure 7b) due to a lack of Vp and Vs velocity models, and thus, whether there
is a plume beneath the volcanic track remains unresolved. Third, the observations provide supporting evi-
dence for the model involving advective upflow of hot material through the NCSW (Thorkelson et al., 2011;
Frederiksen et al., 1998). The reduced pressure in the slab window resulted in decompression partial melting
and is responsible for the observed volcanism and upper mantle LVZ in the area. Results from this study
are consistent with the hypothesis that the upflow is capable of causing significant temperature anomalies
in areas as deep as at least the upper MTZ. Thermal upwelling through a slab window has been proposed
beneath some other areas such as the Indochina Peninsula (Yu et al., 2017) and SW China (Zhang et al., 2017)
and is considered to be the upwelling component of a return flow system induced by sinking slab segments,
as revealed by geodynamic modeling (Faccenna et al., 2010).

5. Conclusions

The resulting highly correlated apparent d410 and d660 depths (Figure 8) suggest strong upper mantle
velocity heterogeneities corresponding to subducted slabs beneath central Alaska and an advective thermal
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upwelling through a slab window in the Northern Cordillera. This study confirms the existence of a subducted
cold slab beneath central Alaska in the upper mantle and provides independent evidence for its penetration
into the upper MTZ, where the slab is probably broken into fragments. Our results show that the LVZ observed
above the Northern Cordilleran slab window extends to the upper MTZ, where the observed depression of
the d410 corresponds to a thermal anomaly of about 180 K.
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