
1.  Introduction
The eastern terminus of the Pacific-Yakutat slab in south central Alaska (Figure 1) is characterized by the 
partial subduction of the Yakutat terrane (YT), which has its origin as an oceanic plateau with anomalous 
crust of more than 20 km thick (Christensen & Abers, 2010; Ferris et al., 2003; Worthington et al., 2012). 
The buoyancy of the subducted portion of the YT has led to flat and shallow subduction in the area from 
the trench to ∼600 km inland (Eberhart-Phillips et al., 2006), where the slab resumes a steeper dip that is 
comparable to that of the neighboring normal oceanic slab (Figure 1). Slab rollback and southward trench 
migration of the “normal” Pacific slab west of the YT have been suggested by geodynamic modeling (Schel-
lart et al., 2007), although the YT portion of the slab may not experience rollback due to its high buoyan-
cy (Jadamec & Billen,  2012). Recent seismic tomography and receiver function studies suggest that the 
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systems beneath south central Alaska, a total of 971 pairs of teleseismic shear wave (SKS, SKKS, and 
PKS) and 65 pairs of local S wave splitting parameters (fast orientations and splitting times) are measured 
using data from the USArray and other networks. The Pacific-Yakutat slab edge separates two regions 
with different characteristics of the splitting measurements. The area to the west of the slab edge has 
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by smaller splitting times and spatially varying fast orientations. The spatial distribution of the splitting 
parameters and results of anisotropy layering and depth analyses can be explained by a model involving 
three flow systems. The sub-slab flow initially entraining with the shallow-dipping Yakutat slab deflects to 
a trench-parallel direction due to slab retreat and an increase in slab dip, and flows northeastward toward 
the slab edge, where it splits into two branches. The first branch enters the mantle wedge as a toroidal 
flow and flows southwestward along the slab, and the second branch continues approximately eastward. 
The flowlines of the toroidal and continued flow systems are approximately orthogonal to each other 
in the vicinity of the slab edge, producing the observed small splitting times and spatially varying fast 
orientations.

Plain Language Summary  Alaska is home to some of the largest earthquakes and violent 
volcanic eruptions on Earth. These natural hazards are mostly caused by the subduction of the Pacific 
Plate beneath the North American Plate along the Aleutian Trench. Such subduction has not only led to 
the rising of the magnificent mountain belts seen on the surface, but also caused the mantle beneath the 
lithosphere to flow. By analyzing elastic waves produced by earthquakes that are at least 9,000 km away 
from the study area and recorded by seismographs deployed in south central Alaska, we have established 
a flow model that can adequately explain the observations. The model suggests that materials beneath the 
subducting Pacific-Yakutat slab are driven northeastward by the southward retreat of the Aleutian Trench. 
At the eastern edge of the subducting slab, they split into two branches, with one continuing eastward and 
another going around the slab edge and entering the area above the slab. The observations and the new 
flow model can be used to better understand forces and processes inside the Earth, which are the ultimate 
reasons for the earthquakes and volcanoes in tectonically active areas such as south-central Alaska.
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Pacific-Yakutat slab may plunge into a depth of over ∼400 km in the man-
tle (Dahm et al., 2017; Gou et al., 2019; Jiang et al., 2018; Martin-Short 
et  al.,  2018). Seismic tomography studies reveal a sharp slab edge that 
is consistent with the eastward termination of the Wadati-Benioff zone 
(e.g., Martin-Short et al., 2018), while some other studies argue that the 
slab edge may extend further to the north in the area underlain by an 
aseismic section of the slab (Figure 1; e.g., Gou et al., 2019).

Numerous geodynamic modeling investigations demonstrate that slab 
rollback near a slab edge can induce a toroidal component of mantle 
flow, which enters the mantle wedge from the sub-slab region (Jadamec 
& Billen,  2010,  2012; Kincaid & Griffiths,  2003; Stegman et  al.,  2006). 
Specifically for the study area in south central Alaska, Jadamec and Bil-
len (2012) conduct mantle flow modeling by considering a set of slab ge-
ometry and rheology parameters. For virtually all models, a flow system 
associated with the Pacific-Yakutat slab edge is revealed. In particular, 
based on azimuthal anisotropy measurements from the Moho to 200 km 
depth, a recent Rayleigh wave tomography study (Feng et al., 2020) sug-
gests a flow system that continues toward the southeast after coming out 
from the slab edge.

One of the most effective techniques to provide direct constraints on man-
tle flow models is shear wave splitting (SWS) analysis (Hess, 1964; Silver 
& Chan, 1991). It has long been recognized that when a P-to-S convert-
ed wave from the core-mantle boundary (SKS, SKKS, and PKS, hereafter 
collectively called XKS) propagates through an azimuthally anisotropic 
layer, the shear wave would split into two components with orthogonally 
polarized directions and different traveling speeds (Ando, 1984; Silver & 
Chan, 1991). Two splitting parameters, the polarization orientation of the 
fast component (ϕ or fast orientation) and the arrival time difference be-
tween the fast and slow components (δt or splitting time), are measured 
to quantify the orientation and strength of the seismic azimuthal anisot-
ropy, respectively.

The primary mechanism for the generation of seismic anisotropy in 
the upper mantle is the lattice preferred orientation (LPO) of the crys-
tallographic axes of anisotropic minerals, especially olivine (Zhang & 
Karato,  1995). Under normal temperature and pressure conditions, 
progressive simple shear will result in the fast polarization orientation 
to be parallel to the a-axis of olivine (Ribe & Yu, 1991). Simple shear is 
commonly produced by the relative movements between the lithosphere 
and asthenosphere such as those associated with absolute plate motion 
and slab subduction (Long & Becker,  2010; Schellart,  2004; Silver & 
Chan, 1991). Additionally, the a-axis aligns at a right angle to the direc-
tion of maximum horizontal compression under uniaxial compression 
(Ribe & Yu, 1991).

In a subduction zone configuration, XKS splitting measurements mainly 
reflect the combined contributions from the mantle flows in the sub-slab 
region and the mantle wedge (Long & Silver, 2009; Perttu et al., 2014), al-
though contributions from the slab and the lithosphere of the overriding 
plate cannot be completely excluded (Feng et al., 2020; Kong et al., 2020; 
Tian & Zhao, 2012). Trench-parallel flow in the sub-slab region is com-

monly attributed to slab rollback, which may also be responsible for trench-perpendicular corner flow in 
the mantle wedge (e.g., Fouch & Fischer, 1996; Kong et al., 2020; Long & Silver, 2008, 2009; Russo & Sil-
ver, 1994). Away from the trench, trench-perpendicular entrained flow caused by viscous coupling between 

Figure 1.  (a) Topographic relief map of the Alaska-Yakutat slab edge 
region with major geological structures. The Yakutat slab is delineated by 
the thick black dash line (Eberhart-Phillips et al., 2006), while the thin 
dash line indicates the aseismic slab area imaged by Gou et al. (2019). 
Contour lines of the depth of the Pacific slab are shown in blue (Gou 
et al., 2019). AR: Alaska Range. The upper right inset shows the location 
of the study area, which is outlined by a red rectangle. The red sawteeth 
mark the trench of the Alaska-Yakutat subduction zone. (b) Measurements 
from previous shear wave splitting studies labeled in the lower-right inset 
(Christensen & Abers, 2010; Hanna & Long, 2012; McPherson et al., 2020; 
Perttu et al., 2014; Silver & Chan, 1991; Venereau et al., 2019; Vinnik 
et al., 1992). Red squares and black dots mark the stations with XKS and 
local S measurements in this study, respectively.
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the slab and the underlying mantle has been proposed (Currie et al., 2004; Eakin & Long, 2013; Paczkowski 
et al., 2014; Russo & Silver, 1994). Numerous shear wave splitting measurements in the vicinity of a slab 
edge can be explained by edge induced toroidal flow (Civello & Margheriti, 2004; Hanna & Long, 2012; 
McPherson et al., 2020; Palano et al., 2017; Venereau et al., 2019).

Most XKS splitting studies including those conducted in Alaska (e.g., Christensen & Abers, 2010; Hanna & 
Long, 2012; Perttu et al., 2014; Venereau et al., 2019) were conducted under the assumption of simple aniso-
tropy, which refers to anisotropy from a single anisotropic layer with a horizontal axis of symmetry (Silver & 
Chan, 1991). This ideal condition produces similar splitting parameters with respect to the arriving azimuth 
of the events (back-azimuth or BAZ). Departures from the ideal conditions of simple anisotropy are termed 
as complex anisotropy (Silver & Savage, 1994), and the most common form of complex anisotropy structure 
consists of two anisotropic layers, each with a horizontal axis of symmetry. The two-layered complex aniso-
tropy is characterized by systematic azimuthal variations of the individual splitting parameters with a 90° 
periodicity. Additionally, if a station is located near the boundary between two or more areas with different 
anisotropic characteristics, the observed anisotropy at the station may also vary azimuthally (referred to as 
spatially varying anisotropy hereinafter), although the variation may not necessarily possess a 90° periodic-
ity (Alsina & Snieder, 1995; Liu & Gao, 2013).

2.  Previous SWS Studies and Rationale of the Present Study
A number of previous SWS studies have been carried out in the Alaska region (Figure 1b), elucidating some 
significant mantle flow features in the vicinity of the Pacific-Yakutat slab edge. The most prominent feature 
observed by pre-USArray studies (Christensen & Abers, 2010; Hanna & Long, 2012; Perttu et al., 2014) in 
this region is an ∼90° change in the observed fast orientation near the ∼70 km slab depth contour line, 
which separates the northern area with mostly trench-parallel fast orientations and the southern area that 
is dominated by trench-perpendicular orientations. The two clusters of fast orientations are mostly inter-
preted as reflecting along-strike flow in the mantle wedge and trench-perpendicular flow in the sub-slab 
region, respectively. Using data from some of the USArray and other stations, Venereau et al. (2019) and 
McPherson et al.  (2020) conduct SWS investigations in the entire Alaska region. Both studies observe a 
circular pattern in the vicinity of the slab edge, and attribute the observations to an edge-induced toroidal 
flow system. Furthermore, on the basis of the consistency between the fast orientations and the strike of 
strike-slip faults (e.g., Denali Fault, Figure 1a), the observed anisotropy near the fault zones is considered to 
be related to shear strain generated by the relative motion along the faults (McPherson et al., 2020).

The current study was motivated by a number of factors. First, most of the previous SWS studies focus on 
identifying the different mantle flow systems in southern Alaska or the entire Alaska region (Hanna & 
Long, 2012; McPherson et al., 2020; Venereau et al., 2019), and detailed analyses focused on the mantle 
flow systems associated with the slab edge are lacking. Second, complex anisotropy (mostly in the form of 
multi-layered anisotropy) has not been recognized in the study area due to a lack of adequate azimuthal 
coverage. Third, local S wave splitting analysis, which is an effective tool in discriminating wedge and sub-
wedge anisotropy (e.g., Karlowska et al., 2021; Kong et al., 2020), is scarce in this region. Fourth, due to the 
near-vertical incidence of the XKS phases, the depth of the source of the observed XKS splitting remains 
ambiguous. Fifth, some aspects of the mantle flow systems in the slab edge region, including the lateral ex-
tent of the toroidal flow and the existence or absence of an eastward continuation of the sub-slab flow after 
it comes out of the slab edge, are still not well understood (Feng et al., 2020; Hanna & Long, 2012; Jadamec 
& Billen, 2010; Venereau et al., 2019).

In this study, we take advantage of the recent significant improvement in both the station and azimuthal 
coverages in the study area as a result of the USArray deployment to systematically investigate the mantle 
flow system in south central Alaska. We isolate contributions of sub-slab anisotropy to the observed SWS 
using local S wave splitting analysis, estimate the depth of the source of XKS splitting using a spatial coher-
ency approach (Gao & Liu, 2012; Liu & Gao, 2011), grid-search the two pairs of splitting parameters under 
a two-layered model (Silver & Savage, 1994), and propose a new mantle flow model to explain the observed 
seismic anisotropy.
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3.  Data and Methods
The XKS and local S data used in this study were recorded by 106 broadband seismic stations (Figure 1b) 
located in the area of 61–66°N and 153–143°W, covering a recording period of 30 years from late 1988 to 
October 2019. The epicentral distance range is 83°–180°, 95°–180°, and 120°–180° for SKS, SKKS, and PKS, 
respectively (Liu & Gao, 2013). In comparison, the latest SWS study covering the study area (McPherson 
et al., 2020) used only the SKS phase in the distance range of 80°–140° recorded during the period of early 
2010 to middle 2017. The seismic data used in this study were recorded by a total of 11 networks specified 
in the Data Availability Statement and were archived at and requested from the Incorporated Research In-
stitutions for Seismology (IRIS) Data Management Center (DMC).

The splitting parameters were measured and ranked following the procedures described in Liu and 
Gao (2013) for XKS and Jiang et al. (2021) for local S waves, and are briefly summarized below. For XKS 
splitting, the procedures were developed based on the minimization of transverse energy technique (Sil-
ver & Chan, 1991). Events with a magnitude of 5.6 or greater determined by the United States Geological 

Figure 2.  Examples of shear wave splitting measurements from two events recorded by station RND. The plots in the 
top row show original and corrected radial and transverse components, and plots in the central rows show the fast 
and slow waveforms and particle motions. The bottom plots are misfit maps, in which colors represent the normalized 
energy on the corrected transverse component. The optimal pair of splitting parameters corresponds to the minimum 
value on the misfit map and is marked by the black star. Note the significant differences in the splitting parameters 
from the two events recorded by the same station due to different piercing point locations.
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Survey (USGS) were used for data requesting from the DMC, and the cutoff magnitude was reduced to 5.5 
for events with focal depths larger than 100 km. For local S wave splitting analysis, only local events with a 
magnitude of 4.0 and greater in the USGS catalog occurred in the S-wave window (which is approximately 
within an angle of incidence of 35°) were used, and the splitting parameters were measured using the prin-
ciple of minimizing the lesser of the two eigenvalues of the covariance matrix (Silver & Chan, 1991). The 
focal depth of the local events resulting in one or more splitting measurements ranges from ∼80 to 145 km.

For XKS splitting, the seismograms were initially windowed in the time period 5 s before and 20 s after the 
predicted time of the XKS arrival, and were band-pass filtered in the frequency range of 0.04–0.5 Hz. The 
corresponding parameters for local S splitting are 5 s before and 10 s after, and 0.1–1.0 Hz. After all the split-
ting parameters were automatically calculated and ranked, we manually checked all the measurements to 
verify and (if necessary) adjust the beginning and end times of the XKS and local S window, quality ranking, 
and band-pass filtering frequencies. The final SWS measurements were grouped into Quality A (outstand-
ing), B (good), N (null), and C (not used) using a set of criteria established based on the signal to noise ratios 
of the original radial, original transverse, and corrected transverse components (Liu et al., 2008), and only 
A and B measurements were used in the study. Null measurements, which are characterized by robust XKS 
arrival on the original radial but no XKS energy on the original transverse components, were not used in 
the study because all the stations with clear XKS arrivals on the radial components resulted in at least one 
Quality A or B measurement. Figure 2 exhibits example XKS measurements recorded at station RND from 
two events with different back azimuths, while Figure 3 shows local S wave splitting measurements from 
three different stations.

Figure 3.  Same as Figure 2 but for local S measurements from stations (a) RND, (b) PPLA, and (c) TRF. Note that 
the original and corrected radial and transverse components are relative to the pre-splitting shear wave polarization 
orientation rather than the back azimuth of the event.
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4.  Results
In total, 971 pairs of well-defined (Quality A or B) XKS measurements 
(Figure 4a) were obtained at 106 stations, while 65 pairs of local S meas-
urements (Figure 4b) were measured at 10 stations. For the XKS results, 
the fast orientations have a circular mean value of 55.0° ± 37.4° and the 
splitting times range from 0.40 to 2.15 s with an average of 1.14 ± 0.31 s, 
which is slightly larger than the global average of 1.0  s for continents 
(Silver,  1996). For the local S splitting measurements, the averages are 
62.4°  ±  27.1° and 0.39  ±  0.13  s for the fast orientations and splitting 
times, respectively.

4.1.  Characterization of Complex Anisotropy

Two-layered anisotropy is characterized by a 90° periodic variation of 
the individual splitting parameters and the two pairs of splitting param-
eters can be determined using a grid-searching technique (Silver & Sav-
age, 1994). Similar to previous complex anisotropy studies (e.g., Cherie 
et al., 2016; Kong et al., 2018; Yang et al., 2014), measurements from 10 
nearby stations with similar azimuthal variations (Figure  5) are com-
bined in this study to improve the azimuthal coverage of the XKS events 
(black bars in Figure 4a). The resulting upper layer fast orientation is 47° 
which is nearly trench-parallel and has a splitting time of 0.7  s, while 
the fast orientation for the lower layer is 8° with a splitting time of 0.6 s 
(Figure 5).

Measurements from several stations (green bars in the black rectangle 
in Figure 4a) also exhibit azimuthal variations but without a 90° or 180° 
periodicity (Figure 6), indicative of possible existence of spatially vary-
ing (or piercing-point dependent) anisotropy. All the measurements from 
the northwest are trench-parallel, similar to the local S results, while 
those from the southeast are nearly NW-SE. Spatially varying anisotropy 
may reflect one anisotropy layer with different anisotropic characteris-
tics (Alsina & Snieder, 1995; Jia et al., 2021; Liu & Gao, 2013), thereby 
implying a possible boundary that separates two or more areas with dif-
ferent anisotropy properties. We apply the spatial coherency approach 
to estimate the depth of the source of the observed anisotropy (Gao & 
Liu, 2012) using measurements from stations in the black rectangle in 
Figure 4a. To search for the optimal depth, the area is divided into over-
lapping blocks of dx by dx degrees2 in size. The dx value ranges from 0.22° 
to 0.30° with a 0.02° interval. For each candidate depth, the coordinates 
of the ray piercing points for all the measurements are computed based 
on the 1-D IASP91 Earth model (Kennett & Engdahl, 1991). The stand-
ard deviations of the splitting parameters over all the measurements 
with ray piercing points inside each of the blocks are computed and then 
averaged over all the blocks. The optimal anisotropy depth corresponds 
to the highest spatial coherency which is reflected by the lowest spatial 
variation factor, which is defined as Fv = wϕFϕ + wδtFδt, where Fϕ is the 
mean standard deviation of the fast orientations, Fδt is the mean standard 
deviation of the splitting times, wϕ and wδt are the weighting factor for the 
ϕ and δt measurements, respectively.

In this study, the optimal anisotropy depth is searched in the range of 0–350 km with an interval of 5 km. 
The weighting factor for ϕ is set as 1/180 and that for δt is set as 1/2.0 (because ϕ varies from 0 to 180° and δt 
has an approximate maximum value of 2.0 s). The anisotropy depth results are shown in Figure 7, in which 

Figure 4.  (a) 971 pairs of XKS splitting measurements from this study. 
Red bars stand for the splitting measurements from stations with 
azimuthally invariant measurements, black bars represent the splitting 
results showing systematic azimuthal variations with a 90° periodicity, 
and green bars indicate the splitting results exhibiting azimuthal 
variations without a 90° periodicity. All the measurements are plotted at 
the surface projections of the ray-piercing points at the depth of 200 km. 
Measurements from stations (purple triangles) in the black rectangle 
are used for anisotropy depth analysis shown in Figure 7. (b) 65 pairs of 
local shear wave splitting measurements and the rose diagram of the fast 
orientations. The background color shows the P wave velocity anomaly at 
200 km depth (Gou et al., 2019).
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Figure 5.  Systematic azimuthal variation of the combined XKS splitting measurements (black bars in Figure 4a). (a) 
Fast orientations plotted against modulo-90° back azimuth. (b) Splitting times against modulo-90° back azimuth. (c) 
Fast orientations against back-azimuth. (d) Splitting times against back-azimuth. The gray line in each plot represents 
the theoretical apparent splitting parameters calculated using the resultant optimal two pairs of parameters shown at 
the top of the figure.

Figure 6.  Azimuthal variation of the combined measurements (green bars in Figure 4a) showing spatially varying 
anisotropy. (a) Fast orientations against the back azimuth. (b) Fast orientations against modulo-90° back azimuth.



Journal of Geophysical Research: Solid Earth

YANG ET AL.

10.1029/2021JB022354

8 of 14

all spatial variation factor curves computed using different dx values in-
dicate an estimated depth of ∼250 km, comparable with the regional slab 
depth proposed by seismic tomography studies (e.g., Gou et  al.,  2019). 
Note that because the 1-D IASP91 Earth model is used for ray tracing, the 
actual ray piercing locations at a given depth might be slightly different 
from the locations determined using the 1-D model when a realistic 3-D 
shear velocity model is used for ray tracing. Specifically relevant to the 
resulting Fv is the situation that a piercing point determined (using the 
1-D model) to be near the edge of a dx by dx degree2 block may actually 
locate in a neighboring block. However, given the spatially gradual (rel-
ative to the size of the blocks) variation of the splitting parameters and 
the fact that only a small fraction of the piercing points are expected to 
be located near the edges, using a 3-D model should not significantly al-
ter the resulting optimal depth. Such a gradual variation is the result of 
the large Fresnel zone relative to the block size (Alsina & Snieder, 1995; 
Chevrot, 2006; Jia et al., 2021).

4.2.  Spatial Distribution of the Splitting Observations

The study area is divided into 4 sub-regions (Figure  8) based on the 
characteristics of the XKS measurements. Area A includes the southern 
most portion of the subducted YT and includes 138 measurements from 
18 stations. The circular mean of the fast orientations is 140.7° ± 14.8° 
and the mean splitting time is 1.15  ±  0.31s, both are consistent with 
those obtained by previous studies (Christensen & Abers, 2010; Hanna 
& Long, 2012; McPherson et al., 2020; Venereau et al., 2019). Almost all 
the stations located south of the ∼40 km slab depth contour line show 
trench-perpendicular fast orientations, which change to a nearly N-S di-
rection where the slab descends more steeply.

Area B includes the NE portion of the YT and an area east of the Pacif-
ic-Yakutat slab edge, with 67 measurements from 14 stations. The mean 
values of the fast orientations and the splitting times are 15.3° ± 37.5° 
and 0.90 ± 0.27 s, respectively. The standard deviation of the fast orienta-

tions is the largest, and the mean value of the splitting times is the lowest, among the four regions. The YT 
portion of this area is dominated by NE-SW fast orientations, while fast orientations in the eastern part of 
the area, which is located to the immediate east of the slab edge, are mostly N-S.

Area C includes most part of the steeply dipping portion of the Pacific-Yakutat slab. The area contains 640 
measurements from 47 stations. The circular mean of the fast orientations is 55.4° ± 20.5° and the simple 
mean of the splitting times is 1.17 ± 0.11 s, which is the highest in the study area. The fast orientations 
show a general parallelism with the strike of the slab depth contours, that is, NE-SW in the western part 
of the area and gradually rotate to E-W and then WNW-ESE near the slab edge, similar to those obtained 
from previous SWS studies (McPherson et al., 2020; Venereau et al., 2019). This region contains all the 65 
pairs of local S splitting measurements from 10 stations (Figure 4b), with mean values of 62.4° ± 27.1° and 
0.39 ± 0.13 s for the fast orientations and splitting times, respectively. At the same 10 stations, the average 
XKS fast orientation is 53.2° ± 27.1°, which is similar to the average fast orientation of local S results, and 
the mean splitting time is 1.25 ± 0.30 s, which is much larger than that of the local S results.

Area D is the easternmost part of the study area and includes 43 measurements from five stations. It is 
differentiated from Areas B and C by its dominantly WNW-ESE fast orientations (with a mean value of 
100.1° ± 23.1°), similar to those in the northeastern part of Area C. The mean splitting time is 1.10 ± 0.32 s.

Figure 7.  Spatial variation factors plotted against assumed depth of 
anisotropy for the XKS splitting measurements from stations in the region 
outlined by the black rectangle in Figure 4a. Different curves are obtained 
using different dx values. The red triangles on the curves represent 
the minimum variation factors corresponding to the optimal depths of 
anisotropy.
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5.  Discussion
The major features of the XKS and local S splitting measurements as well as results from two-layer fitting 
and depth estimate can be accounted for by a model involving three flow systems (Figures 9 and 10). The 
flow systems in the model include an entrained flow beneath the flat subducting portion of the YT (Area A), 
a slab rollback driven toroidal flow system that includes a trench-parallel flow in the sub-slab region and a 
branch that goes around the slab edge and enters the mantle wedge, and an eastward continuation of the 
sub-slab flow after it passes the slab edge. As detailed below, the model can explain the change from trench 
orthogonal fast orientations in Area A to trench parallel fast orientations in Area C which may respectively 
suggest trench orthogonal and trench parallel flows, the spatially varying fast orientations with small split-
ting times in Area B which may indicate interaction of two mantle flow systems with nearly orthogonal 
directions, and fast orientations in Area D that are parallel to the continuation of the slab contours.

5.1.  Entrained Flow Beneath the Flat-Subducting YT

Both modeling and observational studies suggest that when the subducting lithosphere and the underlying 
asthenosphere are coupled, an entrained flow system reflecting the simple shear between the two layers 
can be generated, leading to trench-normal fast orientations (Jadamec & Billen, 2012; Russo & Silver, 1994). 

Figure 8.  Subdivision of the study area based on the spatial distribution of XKS splitting measurements. All the 
measurements are plotted above the 200 km ray-piercing points. Black dash lines are the boundaries between the 
subregions (A–D). Each rose diagram indicates the fast orientations in each subregion.
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This type of mantle flow has been commonly observed in flat and shal-
low subduction zones, such as the Peruvian segment of the Peru-Chile 
subduction zone (Eakin & Long, 2013), the western Hellenic subduction 
zone (Olive et al., 2014), and the flat-subducting portion of the YT (Chris-
tensen & Abers, 2010; Hanna & Long, 2012; McPherson et al., 2020; Pert-
tu et al., 2014; Venereau et al., 2019). The dominantly trench-normal fast 
orientations observed in Area A can thus be attributed to plastic flow en-
trained by the flat-subducting YT. Anisotropy in the lower layer obtained 
using stations in the junction zone of Areas A, B, and C has a nearly N-S 
fast orientation (Figure  8), which is consistent with the dominant fast 
orientation in Area A and can also be attributed to entrained flow.

5.2.  Sub-Slab Trench Parallel Flow From Slab Rollback

Trench parallel fast orientations observed in the southern part of Area 
C (approximately to the SE of the 250 km slab depth contour line which 
represents a transition from a relatively gentle to steep dipping of the 
slab) can be attributed to sub-slab trench parallel flow induced by slab 
rollback (e.g., Fouch & Fischer, 1996; Hall et al., 2000; Jadamec & Bil-
len, 2010, 2012; Russo & Silver, 1994) with possible contributions from 
along-strike variations in slab dip (Kneller & Van Keken, 2008). Due to 
the high buoyancy of the YT, most studies suggest that slab rollback is in-
significant in the study area. However, rollback of the “normal-dipping” 
section of the Pacific-Yakutat slab to the southwest of the YT has been 
suggested by some previous studies (e.g., Schellart et  al.,  2007), which 
should be capable of producing a sub-slab trench parallel flow that is re-
sponsible for the observed trench-parallel anisotropy in the southern part 
of Area C. Indeed, trench parallel fast orientations have been similarly 
observed along the entire Alaskan portion of the Aleutian subduction 
zone (McPherson et al., 2020; Venereau et al., 2019), indicating that var-
iations in slab dip in the study area may not play a significant role in the 
observed trench parallel fast orientation.

5.3.  Contribution of Trench-Parallel Flow in the Mantle Wedge 
to the Observed Anisotropy

The fast orientations observed in Areas A and C show a drastic variation 
from trench-perpendicular to trench-parallel. Based on the azimuthal 
and spatial variations of the SWS results, previous studies indicate that 
the ∼70  km slab depth contour line represents the boundary separat-

ing the two fast orientation patterns, reflecting the sub-slab entrained flow and the trench-parallel flow in 
the wedge, respectively (Christensen & Abers, 2010; Hanna & Long, 2012; McPherson et al., 2020; Perttu 
et al., 2014; Venereau et al., 2019). However, the average splitting time from the local S measurements is 
only 0.39 ± 0.13 s, while the XKS results from the same 10 stations show a mean value of 1.25 ± 0.30 s, sug-
gesting that contributions from trench parallel flow in the mantle wedge to the observed anisotropy is about 
half of that from the sub-slab region. Results from two-layer modeling (Figure 5) for stations in the junction 
area of Areas A, B, and C also indicate the coexistence of sub-slab and mantle wedge flow in this area. The 
NE-SW fast orientation for the upper layer may reflect flow in the mantle wedge, and the nearly N-S aniso-
tropy in the lower layer can be attributed to sub-slab flow. It should be mentioned that the splitting time of 
the upper layer from fitting of the apparent splitting parameters observed in the junction area of Areas A, 
B, and C is considerably larger (0.7 s) than that from local S wave SWS analysis, possibly due to the fact that 
the two areas do not exactly overlap, and to the different frequency compositions of the two types of waves.

Figure 9.  Schematic diagram showing direction of flow lines. The solid 
lines represent flow entering the mantle wedge from the sub-slab region, 
and the dashed lines mark the rollback-induced strike-parallel flow 
beneath the slab and its continued portion. Thin purple and green bars are 
individual XKS and local S measurements, respectively. The thick red and 
green bars respectively indicate the lower and upper splitting parameters 
in the area with two-layered anisotropy. The thick dashed green line is 
the approximate slab edge, inferred from the spatially varying anisotropy. 
The background basemap shows spatially smoothed XKS splitting times. 
The XKS measurements are projected to the depth of nearby slab with a 
maximum depth of 200 km except for those in the rectangle area shown 
in Figure 4a, for which a depth of 250 km is used to be consistent with the 
optimal depth from the spatial coherency analysis (Figure 7). Comparing 
with the low spatial coherency when they are projected to 200 km depth 
(Figure 4a), the measurements are spatially more consistent when they are 
projected at 250 km depth.
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5.4.  Continuation of Sub-Slab Mantle Flow Toward the East

The dominantly E-W and WNW-ESE measurements in Area D are in alignment with the local NW-striking 
strike-slip faults (e.g., Denali Fault in Figure 1a). McPherson et al. (2020) suggest that the anisotropy here 
is caused by the shear deformation associated with the strike-slip boundary because of the directional simi-
larity between the boundary trend and the fast orientations. The general validity of such an interpretation is 
essentially based on the hypothesis of vertical coherent deformation (Silver & Chan, 1991) advocating that 
the lithospheric mantle would deform coherently with the strike-slip processes in the crust and generate 
progressive simple shear. However, if lithospheric shear zones are the major contributors to the observed 
anisotropy in Area D, one would expect greater splitting times in areas of known shear zones (such as the 
Denali Fault). This spatial correspondence is not observed (Figure 9), and thus lithospheric fabrics may not 
be the major factor in generating the observed anisotropy in this area.

An alternative mechanism for the observed anisotropy in this region is an ESE-ward continuation of the 
sub-slab flow system, which splits into two branches after passing the slab edge: a toroidal branch entering 
the mantle wedge (see below), and a continuation branch. In the area immediately to the east of the slab 
edge (Area B), the moving directions of the two branches are approximately orthogonal to each other, lead-
ing to small splitting times (Silver & Savage, 1994).

5.5.  Toroidal Mantle Flow Around the Slab Edge

Geodynamic modeling investigations have demonstrated the presence of a toroidal component of man-
tle flow near a slab edge, where sub-slab trench parallel flow moves around the slab edge and enters the 
mantle wedge (Jadamec & Billen, 2010, 2012; Kincaid & Griffiths, 2003). However, the predicted flow di-
rection from those geodynamic models in the mantle wedge beneath most part of Area C is trench normal, 

Figure 10.  A three-dimensional schematic model showing the mantle flow fields in the four areas. Solid red arrows 
represent the flowlines outside of the slab, and dashed arrows indicate those beneath the slab. The two red columns 
represent the two flow branches. The sawteeth mark the trench of the Alaska subduction zone.
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which is different from the observed fast orientations of local S waves (which mostly sample the mantle 
wedge) in this area by ∼90°. In addition to the possible reasons for this discrepancy discussed by McPherson 
et al. (2020), we speculate that the proposed westward increase in the trench retreat rate (from 0.6 cm/yr in 
south central Alaska to 1.9 cm/yr in the central Aleutians) by Schellart et al. (2007) may cause the transport-
ed materials from the sub-slab region to flow further away from the slab edge along the slab. The observed 
large XKS splitting times and trench parallel fast orientations in Area C (Figure 9) can thus be attributed to 
the combined effects of two anisotropic layers with similar fast orientations associated with trench-parallel 
flows in both the mantle wedge and the sub-slab region.

6.  Conclusions
SWS measurements from both teleseismic and local events are utilized to constrain mantle flow patterns 
beneath south central Alaska. The vast majority of the observations, together with results from complex 
anisotropy analysis and depth estimation of the source of the observed anisotropy, can be explained by a 
model invoking the splitting of the sub-slab trench-parallel flow into two branches. One of the branches is a 
continuation of the sub-slab flow system toward the ESE direction, and the other branch flows around the 
slab edge, enters the mantle wedge, and flows toward the SW along the slab. The two branches are approx-
imately orthogonal to each other in the area immediately to the east of the slab edge, producing spatially 
varying fast orientations with smaller than normal splitting times.
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