
1.  Introduction
Volcanism on Earth is pervasively found at both divergent and convergent plate boundaries, mostly along 
mid-ocean ridges and above subduction zones. In contrast, volcanic activities away from the plate boundaries, 
that is, intraplate volcanism, are found in a variety of settings, and their formation mechanisms are debated. In 
regions adjacent to volcanic arcs, some studies hypothesize that intraplate volcanoes are caused by upwelling 
mantle flow systems associated with slab breakoffs or slab windows (e.g., Maury et al., 2000; Thorkelson, 1996), 
although direct evidence for such flow systems is sparse. The chemical compositions of off-arc volcanoes differ 
from normal arc volcanoes, and the spatial location is independent of the depth of the Wadati-Benioff zone. 
Examples include volcanoes located in the back-arc region in Central Java (e.g., Hall & Spakman, 2015; Kundu 
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Plain Language Summary  It has been well established that the vast majority of the world's 
volcanoes not associated with spreading centers are located along volcanic arcs, ultimately originating from 
dehydration of water-bearing minerals brought down by subducting oceanic slabs. Some volcanoes occur in 
areas away from the volcanic arcs and are usually geochemically different from arc volcanoes. The intraplate 
volcanoes in Central Java are potassic (K)-rich and have been hypothesized to be caused by a supply of volcanic 
material in the deeper asthenosphere compared to the arc volcanoes. The most frequently cited mechanism is 
mantle upwelling through a slab window. The window was imaged by some of the seismic tomography studies, 
but its location is debated due to diminishing resolution at greater depth and limited station coverage. More 
importantly, whether there is indeed a flow system traversing the slab window remains unrevealed. Here we 
conducted seismic azimuthal anisotropy investigation using splitting analyses of two kinds of shear waves 
that are originated at different depths. Our results indicate that mantle flow from the subslab enters the mantle 
wedge by traversing a slab window, and suggest that the vertical component of this flow system accounts for the 
formation of the potassic volcanoes in the area.
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& Gahalaut, 2011; Setijadji et al., 2006), Mount Etna in Italy (Gvirtzman & Nur, 1999), and the magmatism in 
the Mediterranean Maghreb margin (Maury et al., 2000).

The back-arc volcanoes in Central Java, for example, Muria and Bawean (Figure 1), are characterized with K-rich 
magmas (Edwards et al., 1991; Leterrier et al., 1990; Setijadji et al., 2006). Most previous studies propose an 
asthenospheric origin for the volcanoes, possibly resulted from mantle upwelling associated with a slab window 
(e.g., Hall & Spakman, 2015; Setijadji et al., 2006). The proposed slab window, which approximately coincides 
with the location of a seismicity gap in the depth range between 200 and 500 km (Figure 1a), has been suggested 
by a number of seismic tomographic investigations, but the location, size, and shape of the slab window remain 
debated (e.g., Amaru, 2007; Huang et al., 2015; Widiyantoro et al., 2011). Additionally, to date, there is a lack 
of direct geophysical observations on the expected mantle flow system that is assumed to be responsible for the 
K-rich volcanoes.

The Java trench is currently retreating southward at a rate that increases from the west to the east, from nearly 
static in western Java to 15 mm/yr in Central Java, and to 21 mm/yr in eastern Java (Schellart et  al.,  2007). 
Numerous studies using shear wave splitting (SWS, a tool that the current study employs) have demonstrated that 
trench retreat and the accompanying slab rollback can induce trench-parallel entrained mantle flow in the subslab 

Figure 1.  (a) Topographic relief map of the study area with the locations of the potassic volcanoes shown in the red circles (upper plot). The lower plot exhibits the 
epicenters of earthquakes between 1980 and 2021 with a magnitude larger than 4.0. The background color represents the mean P-wave velocity perturbation between 
300 and 500 km depth from Huang et al. (2015). The black dashed ellipse marks the location of the slab window from Hall and Spakman (2015). The green and white 
arrows stand for the plate motion directions relative to the Sunda Plate (Argus et al., 2011), and in a fixed hotspot reference frame (Gripp & Gordon, 2002), respectively. 
The contour lines denote the depth of the subducted slab from the Slab2 model (Hayes et al., 2018). (b) A map showing the station locations involved in the study with 
networks distinguished by different colors, receiver-side shear wave splitting parameters (red bars; Hammond et al., 2010), and the splitting parameters using source-
side S waves (purple bars; Lynner & Long, 2014). The length of the bars is proportional to the magnitude of the splitting time and its orientation stands for the fast 
orientation. (c) A detailed distribution of the broadband seismic stations in the black rectangle of (b).
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region and trench-normal corner flow in the mantle wedge above the slab (e.g., Becker & Faccenna, 2009; Long 
& Becker, 2010; Schellart, 2004; Sternai et al., 2014). In addition, driven by the difference of pressure across the 
subducted slab, part of mantle flow in the subslab may enter the mantle wedge through lateral slab edges or slab 
windows (e.g., Faccenda & Capitanio, 2013; Fan et al., 2021; Yang et al., 2021). The horizontal component of 
the various flow systems could be readily characterized and constrained by the strength and orientation of seismic 
azimuthal anisotropy (Silver & Chan, 1991; Zhang & Karato, 1995). As demonstrated by numerous investigations 
(e.g., Fouch & Fischer, 1998; Kong et al., 2020; Long & Silver, 2009; Lynner et al., 2017; Silver & Chan, 1991; 
Yang et al., 2021), splitting of shear waves originated from teleseismic and local events can be used to quantify 
seismic azimuthal anisotropy and thus delineate the mantle flow fields.

When a sub-vertically propagating shear wave travels through a medium that is azimuthally anisotropic and has an 
axis of symmetry being horizontal, the shear wave would split into two shear waves that have orthogonal polariza-
tion directions and travel in different speed (Ando et al., 1980, 1983; Booth & Crampin, 1985). A splitting delay 
time (δt), which is associated with the strength and thickness of the anisotropic layer, is accumulated along the 
raypath as a result of propagating speed differences between the fast and slow waves (e.g., Long & Silver, 2009; 
Silver & Chan,  1991). The polarization orientation of the fast wave (also termed as fast orientation or ϕ) is 
closely associated with and can be used to explore the orientation of seismic azimuthal anisotropy (Silver, 1996). 
The lattice preferred orientation (LPO) of olivine that is the most abundant upper mantle mineral (Ben Ismail 
& Mainprice, 1998), is generally considered to be responsible for the formation of azimuthal anisotropy in the 
upper mantle (Zhang & Karato, 1995). A-, C- and E-type olivine fabrics, which are all characterized by a fast 
orientation of the resulting azimuthal anisotropy that is consistent with the direction of mantle flow, are regarded 
as the dominant fabric types beneath subducting slabs and in most parts of mantle wedge (Karato et al., 2008).

Previous anisotropy investigations of the Java subduction zone and adjacent regions either use only a limited 
number of stations (e.g., three stations in Hammond et al., 2010; Figure 1) or focus on anisotropic structures 
beneath the subducting plate based on splitting measurements of source-side shear waves (e.g., Lynner & 
Long, 2014; Wang & He, 2020), which mostly suggest a trench orthogonal subslab flow field in the fore-arc 
region (Figure 1). In this study, teleseismic core-mantle-boundary refracted XKS and local S waves recorded by 
123 seismic stations with an unprecedented spatial coverage and resolution are utilized to systematically inves-
tigate the anisotropy structure in the mantle wedge and the subslab region in the vicinity of the Java subduction 
zone, which is aimed at delineating the mantle flow fields above and below the subducted slab, investigating 
possible modulation of the flow field by the previously proposed slab window, and probing the relationship 
between the observed anisotropy and the formation of the K-rich volcanoes in the back-arc region of Central Java.

2.  Data
In this study, data from a total of 123 broadband seismic stations that resulted in no less than one pair of well-de-
fined local S or teleseismic XKS splitting parameters are used to probe the azimuthally anisotropic structures 
of the Java subduction zone (Figure 1). The openly accessible seismic data were obtained from three sources, 
which are elaborated in the Data Availability Statement section. The recording periods of the requested data 
for the stations varied considerably over the time with a duration of early 1996 to middle 2020 (Figure S1 in 
Supporting Information S1). The vast majority of the stations were part of two portable seismic experiments, the 
MERAMEX and DOMERAPI, operated from May 2004 to October 2004 (Wagner et al., 2007) and from October 
2013 to April 2015 (Widiyantoro et al., 2018), respectively.

The following two criteria were utilized to request waveform data for the XKS splitting analyses: (a) the epicen-
tral distance between the station and event has a range of 83°–180° for SKS, 95°–180° for SKKS, and 120°–180° 
for PKS (Figure 2a); (b) the cut-off magnitude is 5.6 for events that have a focal depth less than 100 km, and it is 
5.5 for events with greater depth (Liu & Gao, 2013). The events utilized in the analyses of local S splitting have 
an epicentral distance range from 0° to 7° (Figure 2b) with a cut-off magnitude of 4.0. Wave-type conversions 
associated with the free surface may cause interference to the local S waves used for SWS analyses. To avoid the 
influence, only data from events that are within the S-wave window were utilized, which represents a cone-shaped 
region. The events inside the region have an incidence angle no greater than θ, where θ is calculated by sin −1 VS/
VP (Booth & Crampin, 1985; Evans, 1984). Using the commonly recognized VP and VS velocity ratio of 1.732 
(Zandt & Ammon, 1995) leads to a threshold angle of incidence of 35.3°.
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3.  Methods
For XKS splitting analyses, we utilized the set of approaches described in Liu and Gao (2013) that is based on 
the method of transverse energy minimization (Silver & Chan, 1991). The optimal splitting measurements corre-
spond to a pair of δt and ϕ that can best minimize the energy on the transverse component after correction. In 
the process of measuring the splitting parameters using local S waves, the optimal pair of splitting measurements 
is related to the lesser of the two eigenvalues of the covariance matrix, equivalent to the most-linear particle 
pattern after correcting the horizontal seismograms based on the optimal pair of splitting parameters (Silver & 
Chan, 1991). The error estimates of the resulting optimal splitting parameters from both XKS and local S waves 
are performed by applying the inverse F-test, which stands for the 95% confidence level (Silver & Chan, 1991). 
In addition, the XKS and local S waveforms were band-pass filtered using corner frequencies of 0.04 and 0.5 Hz, 
and 0.1 and 1 Hz, respectively, for the purpose of enhancing the signal-to-noise ratio (SNR). The time windows 
utilized for measuring splitting parameters of the XKS and local S waves were initially set as (ta − 5 s, ta + 20 s), 
and (ta − 1 s, ta + 5 s), respectively, where ta denotes the predicted arrival time of S or XKS measured using the 
IASP91 Earth model, and were adjusted if needed during the process of manual checking in order to exclude 
non-XKS or non-local S arrivals.

As detailed in Liu et al. (2008) and Liu and Gao (2013), an objective ranking procedure that is based on the SNR 
on the radial and transverse components before and after corrections was next applied to all the resulting splitting 
parameters including the local S and XKS measurements, during which process the measurements were ranked 
into Quality A (excellent), B (good), C (unusable), and N (null). All the XKS and local S measurements were 
then manually checked to ensure reliability, and the time window used for measuring the splitting parameters and 
the rank were adjusted if needed. Examples of splitting measurements measured by using waveforms from the 
teleseismic XKS and local S events are shown in Figures 3 and 4, respectively. Note that for direct S waves from 
local events, the radial and transverse directions are not relative to the orientation of the great circle arc but to the 
initial polarization direction (pre-splitting) of the direct S wave.

4.  Results
4.1.  Results From XKS Splitting

Totally, 67 pairs of well-defined XKS splitting parameters with a Quality of A or B were obtained at 42 individual 
seismic stations, including two ocean-bottom-seismometers (OBSs), which are composed of 12 pairs of PKS, 24 
pairs of SKKS, and 31 pairs of SKS measurements (Figure 5 and Table S1). The spatial variation of the number 
of splitting measurements can be found in Figure S2 in Supporting Information S1. In general, the number of 
well-defined SWS measurements from the OBSs is about two pairs per OBS per year which is comparable to 
the previous SWS studies utilizing OBS data (e.g., Martin-Short et al., 2015). In comparison, the number for the 

Figure 2.  (a) A map of azimuthal equidistant projection illustrating the event distributions which result in no less than one pair of well-defined (Rank A or B) XKS 
splitting measurements. The color of the solid circles which have a radius of 1° denotes the number of splitting measurements from events in the circles. The dashed 
circles represent the distance from the center (red star) of Central Java with values labeled in degree. (b) Same as (a) but for events used in the local S splitting analyses. 
(c) A schematic diagram exhibiting the raypath of two kinds of S waves with different origin depth which are utilized in the study.
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onshore Z6 stations is about 3 and close to that obtained in the adjacent Sumatra subduction zone per unit time 
(Kong et al., 2020). Due to (a) the short duration of the majority of the stations (Figure S1 in Supporting Informa-
tion S1) relative to most other portable seismic experiments and (b) the fact that the area is located less than 83° 
from areas hosting a significant portion of the XKS events (e.g., Tonga area) for other XKS studies, the number 
of XKS measurements is not high, although it is comparable to most other XKS studies in terms of the number of 
measurements per unit area. The splitting times of the XKS splitting measurements have a range of 0.30–2.05 s 
with a mean value of 1.06 ± 0.05 s. The splitting measurements from the OBSs have a mean of 1.6 ± 0.2 s for δt 
and a circular average of 34.0 ± 15.4° for ϕ, which is subnormal to the trench strike (about 105° clockwise from 
the North) and consistent with the relative plate motion direction (RPM) of the Australian Plate relative to the 
Sunda Plate (36°–39°; Argus et al., 2011) and previous subslab anisotropy measurements (Figure 1b; Lynner & 
Long, 2014). In contrast, a systematic lateral variation of the XKS fast orientations can be observed at the onshore 
stations (Figures 5a and 6). For the XKS measurements in the west part of Central Java, the fast orientations are 
mostly subnormal to the trench strike and consistent with the RPM (red bars shown in Figure S3 of Supporting 
Information S1). To the east, the ϕ measurements in the arc region are mostly trench-parallel (green bars in Figure 
S3 of Supporting Information S1) and display a generally clockwise rotational pattern in the back-arc region 
(Figure 6).

To verify the presence or absence of complex anisotropy associated with multiple-layered (Silver & Savage, 1994) 
or dipping axis structures (Levin & Park, 1997), a decent back azimuthal coverage of XKS splitting measurements 
is needed to demonstrate the systematic dependence of ϕ and δt on the back azimuth. The measurements from 

Figure 3.  Shear wave splitting examples from PKS, SKKS, and SKS events recorded at Stations ME37 (left column), BG2 (middle), and UGM (right). For each 
measurement, the plots on the top denote the original and corrected radial (black) and transverse (red) waveforms, the middle plots represent the fast (red) and slow 
(black) waves before and after moving forward the slow wave by the optimal splitting delay time, patterns of particle motion before (left) and after (right) moving 
forward the slow wave, and the bottom misfit contour map illustrates the normalized energy computed using waveforms of the corrected transverse component in the 
time window marked by the two vertical bars in the top panels. The white stars represent the optimal fast orientation and splitting time that result in the minimum 
misfit.
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Station UGM located in the eastern part of Central Java, which cover about two-thirds of the full back azimuth 
range in the modulo 90° domain, are characterized with insignificant back azimuthal variations (Figure S4 in 
Supporting Information S1), consistent with the presence of a single layer anisotropy model with a horizontal axis 
of symmetry (simple anisotropy). For the western part of Central Java, where the stations have a short duration of 
recording (Figure 1), the (in) dependence of splitting parameters on the back azimuth can be revealed by combin-
ing measurements from a number of adjacent stations. As shown in Figure S5 of Supporting Information S1, no 
systematic azimuthal variations of the splitting parameters are found, suggesting that the measurements can also 
be adequately attributed to a simple anisotropy model.

4.2.  Splitting Results From Local S Events

The local S splitting parameters were obtained at 105 stations (Figure 5b and Table S2). The 197 pairs of Qual-
ity A or B measurements were from 43 local earthquakes with focal depths ranging from 22.3 to 594.4 km. 
For stations located in the arc region, the fast orientations are mostly subparallel to the strike of the Java trench 
(around 105°) with a circular mean of 127.9 ± 37.4° (Figure 5b) and are approximately normal to the fast orien-
tations of the XKS splitting measurements. The splitting times in this region have a mean of 0.56 ± 0.02 s. In the 
back-arc region of Central Java, the fast orientations become dominantly oblique to the strike of the trench and are 
generally in accord with the XKS measurements (Figure 5), with mean values of 76.1 ± 22.5° and 0.54 ± 0.03 s 
for the fast orientation and splitting time, respectively.

Figure 4.  Same as Figure 3 but showing SWS measurements from local S events. The three columns from left to right represent measurements from Stations UGM, 
CK3, and DK3, respectively.
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5.  Discussion
5.1.  Estimation of the Depth of Anisotropy

The densely spaced stations make it feasible to apply the technique that estimates the depth of the layer of aniso-
tropy responsible for the observed XKS splitting parameters based on the spatial coherency (Gao & Liu, 2012). 
The description of the technique is briefly summarized here. For each candidate anisotropy depth that ranges from 
0 to 400 km with a 5 km interval, the coordinates of the XKS ray-piercing points are first computed, and a spatial 
variation factor, which represents a weighted average of the consistency of the splitting parameters (as measured 
by the standard deviations of the two splitting parameters) in overlapping rectangle blocks, is computed. The 
optimal anisotropy depth corresponds to the minimum variation factor. The calculation is conducted with a block 
size of 0.08°. As shown in Figure 7, the resulting optimal anisotropy depth is 270 km, suggesting that the source 
of anisotropy accounted for the observed XKS splitting parameters is located in the asthenosphere.

5.2.  Mantle Flow From a Slab Window Driven by Slab Rollback

It has been widely established that simple shear originating from the flow gradient generated by the relative 
movement between the asthenosphere and the overlying lithosphere could produce azimuthal anisotropy with a 
resulting fast orientation that is consistent with the shear direction (Silver, 1996; Silver & Chan, 1991; Zhang & 
Karato, 1995). In Central Java, the resulting anisotropy measurements constrained by the local S and teleseismic 
XKS splitting parameters can be adequately explained by a model invoking mantle flow that enters the mantle 
wedge from the subslab region through a slab window driven by slab rollback (Becker & Faccenna, 2009; Liu 
et  al.,  2019; Long & Becker,  2010; Schellart,  2004). Under this model (Figure 8), the mantle flow from the 
subslab enters the mantle wedge with a toroidal flow pattern caused by the southward trench retreat and slab 
rollback, which might be responsible for the abrupt change of XKS fast orientations observed in the arc region of 

Figure 5.  (a) Resulting splitting parameters using XKS phases plotted at station locations. The red, green and blue bars show the SKS, SKKS, and PKS splitting 
measurements. The triangles represent the locations of the stations. (b) Individual splitting measurements using direct S waves from local events (purple bars) plotted at 
station locations (triangles). The potassic volcanoes are shown as volcano symbols.
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Central Java and the generally clockwise rotational pattern of ϕ observed in the back-arc region (Figure 6). The 
horizontal component of the flow escaped from the subslab region through the slab window may flow along the 
trench in the mantle wedge, leading to the fast orientations that are mostly trench-parallel obtained from the local 
S wave splitting analyses.

Among previous SWS studies in subduction zones, the classical flow model in the mantle wedge involves two-di-
mensional corner flow associated with the downgoing slab (e.g., Becker & Faccenna, 2009; Fan et al., 2021; Hall 
et al., 2000) which has a resulting fast orientation generally consistent with subduction direction. This model 
may explain the western part of the XKS measurements (west of ∼110°E) but can not adequately account for the 
mostly trench-parallel measurements in the eastern part (Figures 5 and 6), and is not consistent with the predicted 
splitting patterns from numerical and analog modeling studies (e.g., Becker & Faccenna, 2009; Schellart, 2004) 
when both slab window and slab rollback are present as discussed below.

The slab window is imaged as a hole approximately between 200 and 500 km, but the detailed spatial loca-
tion is controversial among previous tomography studies (e.g., Amaru, 2007; Huang et al., 2015; Widiyantoro 
et al., 2011). If we assume that the branch of the subslab flow that goes through the middle of the slab window 
would largely maintain its original flow direction both before and after passing through the window, the eastern 
edge of the slab window would be located at the site where ϕ starts to rotate (Figure 8b). Such a mantle flow field 
is consistent with the slab-rollback-driven flow model suggested by numerical modeling studies (e.g., Becker & 
Faccenna, 2009) and analog modeling experiments (e.g., Schellart, 2004). Similar abrupt change of ϕ observed 

Figure 6.  Teleseismic XKS splitting parameters (lightblue bars) plotted above the ray piercing point of 250 km depth. The 
background color represents the angular difference between the fast orientation measurements and the Australian Plate motion 
direction relative to the Sunda Plate (Argus et al., 2011). The black bars illustrate the circular mean of the fast orientation and 
the average of the splitting time for the bins with a radius of 0.5° centered at the bars. The ellipse denotes the favored location 
of the slab window validated by the local S and XKS splitting measurements with the western edge undefined.
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in Central Java has also been observed in the western Hellenic (Evan-
gelidis, 2017) and South American subduction zones (Lynner et al., 2017), 
which have been attributed to slab tears.

5.3.  Relationship Between Mantle Flow and Potassic-Rich Volcanoes

One of the simplest models that can explain the resulting splitting meas-
urements using local S and XKS waves involves mantle flow entering the 
mantle wedge from the subslab region through a slab window, which has 
been hypothesized to be responsible for the formation of the mantle-driven 
potassic volcanism in Central Java (e.g., Hall & Spakman, 2015; Kundu & 
Gahalaut, 2011; Setijadji et al., 2006). As shown in Figure 8, the majority of 
the potassic volcanoes in the back-arc region of Central Java are located adja-
cent to the slab window, and along the path of the mantle flow field escaped 
from the subslab region to the mantle wedge. The only two active K-rich 
volcanoes, Dieng and Ungaran (Figure 8; Leterrier et al., 1990), are located 
more closely to the volcanic axis than the others. Such a spatial pattern can 
be related to the southward migration of the slab window associated with 
the southward slab rollback. This formation mechanism has been utilized 
elsewhere to explain the abnormal magmatism for intraplate volcanism, 
for example, Mount Etna (Gvirtzman & Nur, 1999) and the Afyon alkaline 
volcanic complex in western Turkey (Prelevic et  al.,  2015), in which the 
mantle flow through a slab window either melted lithospheric mantle that 
was metasomatized during previous subductions with its abnormally high 
temperature (Maury et al., 2000), or directly provided the enriched source 
for the distinct chemical composition of intraplate volcanism (e.g., Leterrier 
et al., 1990; Prelevic et al., 2015; Setijadji et al., 2006).

Figure 7.  Resulting spatial variation factors plotted with respect to the 
assumed depth of anisotropy computed by applying the spatial coherency 
method (Gao & Liu, 2012) using the observed XKS splittings in Central Java. 
The estimation is conducted with a bin-size (dx) of 0.08°. The optimal depth 
of anisotropy corresponds to the minimum variation factor and marked with a 
red triangle on the curve.

Figure 8.  Schematic diagrams showing the mantle flow fields in the upper mantle of the Java subduction zone in a 3D view (a) and a planar view (b). The dashed 
red arrows denote the mantle flow beneath the subducting slab, while the solid red arrows represent the mantle flow in the mantle wedge above the slab. The gray 
bars represent the observed XKS splitting parameters. In (a and b) the red and black volcano symbols represent the active (Dieng and Ungaran) and inactive potassic 
volcanoes, respectively.
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6.  Conclusions
SWS analyses using both direct S waves from local events and teleseismic XKS phases that were characterized 
with different origin depth and recorded by both land-based stations and OBSs are used to systematically inves-
tigate the azimuthally anisotropic structures in the subslab mantle and the mantle wedge of the Java subduction 
zone. The two sets of splitting parameters can be explained by a mantle flow system that is driven by the south-
ward slab rollback and enters the mantle wedge through a slab window, causing a trench-parallel subslab mantle 
flow beneath the arc region and a mostly trench-parallel flow in the mantle wedge. The upwelling component 
associated with the escaped mantle flow through the slab window may account for the formation of the puzzling 
back-arc potassic-rich volcanism in Central Java.

Data Availability Statement
All the seismic waveform data used in this study were freely available from three data centers, including (a) the 
Incorporated Research Institutions for Seismology (IRIS) Data Management Center located in the United States 
(https://ds.iris.edu/ds/nodes/dmc/data/types/waveform-data; last accessed: April 2020) for Station UGM from 
Network GE (https://geofon.gfz-potsdam.de/waveform/archive/network.php?ncode=GE), (b) the GEOFON Data 
Centre of the GFZ German Research Centre for Geosciences (https://geofon.gfz-potsdam.de/waveform/archive; 
last accessed: April 2020) for Stations SMRI and YOGI from Network GE and 86 stations from Network Z6 
(http://www.fdsn.org/networks/detail/Z6_2004), and (c) the RESIF seismic data portal (https://seismology.resif.
fr/), a consortium composed of 18 research institutions and universities in France (last accessed: April 2020) 
under the network code of YR (http://dx.doi.org/10.15778/RESIF.YR2013). The data from IRIS were obtained 
by using BREQ_FAST (http://ds.iris.edu/ds/nodes/dmc/manuals/breq_fast), while the data from GEOFON and 
RESIF were requested through the web services using the fdsnws_fetch command (https://www.seiscomp.de/
seiscomp3/doc/applications/fdsnws_fetch.html) and the service interface of timeseries (http://ws.resif.fr/resifws/
timeseries/1/local=en), respectively.
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