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Mechanisms responsible for the long-term subsidence of intracontinental basins such as the Williston 
Basin in North America remain enigmatic, partly due to the thick sedimentary layer commonly found in 
the basins that prevents reliably imaging the deep crustal and upper mantle structures using some of 
the most-commonly employed seismic methods such as receiver function analysis. In this study, we used 
receiver functions recorded by 274 USArray and other stations in the Williston Basin and adjacent areas 
to investigate the layered structure of the crust in the hydrocarbon-rich intracontinental basin. After the 
removal of strong reverberations on the receiver functions associated with a low-velocity sedimentary 
layer using a recently developed time-domain deconvolution approach, two positive arrivals representing 
downward increases of seismic velocities are imaged beneath the basin and the area to the west. The top 
interface has a depth of about 40 km at the depocenter of the basin, and gradually shallows eastward 
to about 30 km beneath the Superior Craton, and the deeper interface has a mean depth of about 65 
km beneath the Williston Basin. The layer between the two interfaces may represent an eclogitized or 
garnet-rich lower crustal layer. The results are consistent with the hypothesis that continuous retrograde 
metamorphic reactions in the previously-thickened lower crust during the Paleoproterozoic Trans-Hudson 
Orogeny resulted in the subsidence of the intracontinental Williston Basin.
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Fig. 1. Distribution of seismic stations (triangles) and major tectonic features (Fos-
ter et al., 2006) of the study area. The background image shows the thickness of 
Phanerozoic sediments (Laske and Masters, 1997). The two red dots denote the two 
stations (A26A and B33A) used in Fig. 3, and the 17 red stars represent stations 
used in Figs. S4-S20 to demonstrate the effectiveness of the reverberation removal 
procedure. The region shaded in red in the inset map of North America shows the 
study area. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

1. Introduction

The Williston Basin (WB) of the north-central United States 
and southern Canada (Fig. 1) is the archetype of intracontinen-
tal basins, with an elliptical shape and subsidence episodes that 
spanned a 400 million year period from the Cambrian to Juras-
sic (Kent and Christopher, 1994). While the basin is considered 
an intracontinental basin, it initially started as a cratonic margin 
basin as Upper Cambrian strata were deposited on the edge of the 
western craton embayment (Burgess, 2008). As material accreted 
to the western United States during various Paleozoic and Meso-
zoic orogenic events, it slowly became an intracontinental basin. 
The establishment of the current elliptical shape of the WB started 
in the Devonian and was completed by the Cretaceous Laramide 
orogeny (Kent and Christopher, 1994).

The Phanerozoic sedimentary layer at the depocenter of the 
basin reaches a maximum thickness of about 4.5 km (Fig. 1; Laske 
and Masters, 1997). While all periods between the Cambrian and 
Jurassic are represented, the sediments were deposited in five de-
positional intervals with distinctive unconformities between these 
events (Kent and Christopher, 1994). The basin is largely centered 
over the lithologies of the Trans-Hudson Orogen (THO), a Pale-
oproterozoic collisional belt between the Superior and Wyoming 
cratons developed between 2.0 and 1.8 Ga (Green et al., 1985). 
Based on gravity and magnetic studies (Green et al., 1985), seis-
mic reflection profiling (Baird et al., 1995) and scattered deep drill 
holes (Kent and Christopher, 1994), the basement underlying the 
WB includes three Proterozoic terranes: 1) Archean Wyoming and 
Hearn Cratons to the west, 2) THO in the center, and 3) the Supe-
rior Craton to the east. Although the basin is generally considered 
an intracontinental basin, the surface of the Archean and Protero-
zoic basement is far from being smooth as seismic reflection profil-
ing and drill hole data identified at least ten large scale structure 
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features (e.g., domes) and basin-wide faults within the basement 
(Kent and Christopher, 1994; Burgess, 2008).

Partly because the WB is a major oil and gas producer in the 
U.S. and one of the four major shale oil plays in the country, nu-
merous geological and geophysical investigations have been con-
ducted over the past several decades, mostly targeting the top 
several kilometers. A number of contrasting models have been 
proposed to explain the basin’s characteristic tectonic features 
and subsidence history. These models involve thermal, magmatic, 
metamorphic, extraterrestrial impact, and kinematic processes in 
the crust, mantle lithosphere, and asthenosphere (Beaumont, 1978; 
Jarvis and McKenzie, 1980; Quinlan, 1987; Middleton, 1989; Sears 
and Alt, 1992; Baird et al., 1995; Naimark and Ismail-Zadeh, 1995; 
Allen and Armitage, 2012; Daly et al., 2018; Watts et al., 2018). 
One of the most commonly-invoked models attributes the long-
term subsidence of intracontinental basins such as the WB to con-
tinuous formation of garnet or eclogite in the lower crust (Green 
and Ringwood, 1967; Fowler and Nisbet, 1985; Kay and Kay, 1991; 
Hamdani et al., 1994; Baird et al., 1995; Fischer, 2002; Gac et al., 
2013; Schulte-Pelkum et al., 2017). Cooling of the thickened lower 
crust beneath collisional belts such as the THO may promote gar-
net growth, and consequently form a dense lower crustal layer 
characterized by a P-velocity greater than 7.0 km/s (i.e., the 7.x 
layer). The formation of a garnet or eclogite layer is usually at-
tributed to some type of tectonic event or the aftermath of such an 
event that involved the upper mantle and lower crust (Artyushkov 
and Baer, 1983; Allen and Armitage, 2012). However, models at-
tributing the formation of the WB to Proterozoic events cannot 
satisfactorily explain the significant time gap between the THO and 
the first sediments (Upper Cambrian) in the WB.

In the contiguous U.S., the 7.x layer has been detected through 
seismic refraction, surface wave tomography, and receiver function 
(RF) studies beneath the Rocky Mountains, the eastern half of the 
Great Plains of North America, and most of the eastern U.S. (e.g., 
see Fig. 2 of Schulte-Pelkum et al., 2017). The existence of a 7.x 
layer beneath the WB and most other areas covered by a layer of 
low-velocity Phanerozoic sediments is ambiguous and debated, es-
pecially among studies using receiver functions (RFs) (e.g., Thurner 
et al., 2015; Schulte-Pelkum et al., 2017). Such uncertainties are 
largely due to the strong reverberations in the RFs associated with 
the sedimentary layer and the resulting possibility of misidenti-
fying one of the pulses in the reverberation series as the Moho. 
Higher than normal shear velocities have been suggested beneath 
the WB from surface wave tomographic studies (Schmandt et al., 
2015; Shen and Ritzwoller, 2016), but whether they represent the 
7.x layer is not clear.

In this study, by applying a frequency-domain deconvolution 
technique that we recently developed (Yu et al., 2015) to remove 
the sedimentary reverberations from the RFs, the existence of a 
lower crustal layer with a thickness up to 25 km is revealed be-
neath the WB. Our results suggest that cooling-induced densifica-
tion of this lower crustal layer through garnet growth or eclogiti-
zation can explain the long-term subsidence of the WB.

2. Data and methods

2.1. Data and RF calculation

The broadband seismic data used in this study were obtained 
from the Data Management Center (DMC) of the Incorporated Re-
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Fig. 2. An azimuthal equidistant map centered at the approximate center (red tri-
angle) of the study area showing earthquake source areas. Each dot represents a 
radius = 1◦ circular bin. The distance between neighboring bins is 1◦ . The color 
represents the number of used receiver functions originated from earthquakes in 
the bins. The distance (in degrees) from the center of the study area is indicated by 
the number on the circles.

search Institutions for Seismology (IRIS), recorded over the period 
from July, 1996 to March, 2022. Most of the data were recorded by 
stations belonging to the EarthScope Transportable Array (TA) of 
the EarthScope Initiative, which covered the study area during the 
period of 2007-2012. The epicentral distances range from 30◦ to 
100◦ , and the cutoff earthquake magnitude used for data request 
was computed using an empirical formula that considers the fo-
cal depth and the epicentral distance to balance the quantity and 
the quality of the requested data (Liu and Gao, 2010). The three-
component seismograms were windowed 10 s before and 100 s 
after the theoretical arrival time of the first P-wave, and were 
bandpass filtered in the frequency range of 0.1-1.0 Hz. Filtered seis-
mograms with robust P arrivals on the vertical component were 
then converted into radial RFs using the water-level deconvolu-
tion approach (Ammon, 1991). The water-level and Gaussian width 
values used for computing the RFs are 0.03 and 5.0 (which cor-
responds to a low-pass frequency of 2.4 Hz), respectively. Totally 
27544 RFs from 2608 teleseismic events (Fig. 2) were used for 
the study. The number of seismic stations is 274 (Fig. 1), includ-
ing 148 EarthScope TA stations. To estimate the sharpness of the 
discontinuities which is quantified by the thickness of the gradient 
transition, the seismograms were also filtered in several frequency 
bands with corner frequencies f1 and 2.4 Hz, where f1 = 0.08, 0.12, 
0.16, and 0.20 Hz, prior to conversion to RFs.

2.2. Removal of reverberations associated with a low-velocity 
sedimentary layer

Fig. 3 shows RFs recorded by two different stations. While the 
RFs recorded by TA station B33A, which was located on the Supe-
rior Craton outside the WB, have a simple waveform that is typical 
for RFs obtained at stations deployed on basement rocks, the RFs 
from TA station A26A, which was in the WB, show a peak that is 
3

Fig. 3. RFs recorded by (a) Station B33A located on the Superior Craton, and (b) Sta-
tion A26A in the WB plotted against the epicentral distance. (c) and (d) are simple 
time-domain summations of the RFs shown in (a) and (b), respectively.

delayed by about 1 s. Additionally, the waveforms are dominated 
by a decaying series of reverberations with a period of about 5 
s. Those features are characteristics of shear wave multiple reflec-
tions in a low-velocity layer of unconsolidated or partially consol-
idated sediments (Yu et al., 2015). The first peak is termed Pbs 
by Yu et al. (2015), which is the P-to-S conversion from the bot-
tom of the low-velocity sedimentary layer, and its delay time is 
proportional to the thickness of the layer. Figs. S1-S3 show three 
additional station pairs located in the northeastern corner of the 
study area to demonstrate the pervasiveness of the sharp contrast 
of the waveforms between basin and cratonic stations.

The reverberations can be effectively removed by applying a 
frequency-domain deconvolution procedure that utilizes a reflec-
tion coefficient and the period of the reverberations (Fig. 3b), 
both of which can be measured from the auto-correlation func-
tion of the RFs (Yu et al., 2015). To demonstrate the effectiveness 
of the reverberation-removal procedure, we produced a synthetic 
RF attempting to match the RFs recorded at Station B22A, using 
a reflectivity-based procedure (Randall, 1994). In order to maxi-
mize the similarity between the recorded and calculated RFs, we 
tried a number of different models and the optimal model has 4 
layers, which are separated by the bottom of the low-velocity sed-
imentary layer, an intracrustal interface, and the Moho (Table S1). 
For a surface event with an epicentral distance of 65◦ , the pre-
dicted arrival times of the P-to-S converted phase from the base of 
the sedimentary layer, the intracrustal interface, and the Moho are 
0.83, 5.65, and 7.85 s, respectively. The three arrivals are respec-
tively labeled as Pbs, Pis, and Pms in Fig. 4. We acknowledge that 
different combinations of parameters in the model may lead to a 
similar goodness of fit between the calculated and recorded RFs, 
but the low velocity sedimentary layer, an intracrustal interface, 
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Fig. 4. (a) RFs recorded by station B22A in the WB (black traces) and synthetic RFs 
obtained at an epicentral distance interval of 5◦ (red traces). (b) Same as those 
shown in (a) but after applying the reverberation-removal procedure. The purple, 
green and blue lines mark the onset times of the Pbs, Pis, and Pms arrivals, re-
spectively. (c) and (d) are simple time-domain summations of the RFs shown in (a) 
and (b), respectively. Pbs: P-to-S conversion from the base of the loose sedimentary 
layer; Pis: P-to-S conversion from an intracrustal layer; Pms: P-to-S conversion from 
the Moho. Note that the arrows point to the theoretical onset rather than the peak 
of the arrivals.

and the Moho are required in order to match the major character-
istics of the original and reverberation-removed RFs.

The resulting synthetic RFs (red traces in Fig. 4a) capture all the 
major characteristics of the recorded ones, especially the amount 
of shift of the first positive peak, and the periods and ampli-
tudes of the waveform (Figs. 4a and 4c). Such similarities are 
best observed on the stacked traces (Fig. 4c). After the appli-
cation of the reverberation removal filter to both the recorded 
(black traces in Fig. 4b) and synthetic (red traces in Fig. 4b) RFs, 
the multiples are largely removed, and the resultant synthetic 
reverberation-free RFs match the observed ones reasonably well 
(Figs. 4b and 4d). The arrival times of the three most prominent 
peaks on the reverberation-removed synthetic RFs agree with the 
predicted arrival times and polarity of the Pbs, Pis, and Pms ar-
rivals (Fig. 4d, red trace), and thus they are unlikely to be artifacts 
produced by the reverberation-removal process. The fact that the 
three peaks can also be observed on the recorded RFs at approxi-
mately the same times as those on the synthetic RFs suggests that 
the reverberation-removal procedure also performed well on the 
recorded RFs (Fig. 4d, black trace).

To provide additional demonstration on the effectiveness of the 
reverberation-removal procedure, the original and processed RFs 
for each of the 17 USArray-TA Profile “B” stations (in the approx-
imate latitudinal range of 48◦-48.5◦ , Fig. 1) are displayed in Figs. 
S4-S20. The reverberations on the processed RFs at stations in the 
WB are clearly reduced.
4

2.3. Receiver function stacking

To produce E-W profiles of stacked RFs, we divided the top 100 
km of the Earth within the study area into rectangular blocks of 
1◦ ×1◦ ×1 km (N-S, E-W, and vertical) with E-W and vertical mov-
ing steps of 0.1◦ and 0.1 km, respectively. We then ray-traced the 
RFs and computed the mean amplitude of the RFs in each of the 
blocks. The ray-tracing is performed using a velocity model com-
posed of a mean crustal Vp (Vs) of 6.1 (3.39) km/s. The IASP91 
Earth model was used for sub-crustal velocities and structure to 
compute the ray parameters. The stacked RFs are normalized by 
the maximum amplitude in the 30-75 km depth range. The proce-
dure is similar to common conversion point (CCP) stacking (Dueker 
and Sheehan, 1997). A total of five E-W profiles, which are cen-
tered at 45-49◦ N with an interval of 1◦ , were produced. With 
an estimated upper limit of 5% of uncertainty in the mean crustal 
velocities, the depths of the resulting interfaces (including an in-
tracrustal interface and the Moho) may have an uncertainty of 
no more than 4 km, as determined by synthetic tests (Nair et 
al., 2006). In particular, the crustal thickness in the area with the 
greatest sedimentary thickness is overestimated by a few kilome-
ters. As demonstrated below, this uncertainty has negligible effects 
on the main conclusions of the study, which are mostly drawn 
from the existence of the interfaces and their lateral depth vari-
ations rather than the absolute depths. The depths of the Pis and 
Pms phases are manually picked by taking considerations of the 
robustness of the arrivals, and the similarity of both the waveforms 
and depths with neighboring bins.

3. Results

3.1. Effects of the low-velocity sedimentary layer atop the Williston 
Basin on the RFs

The existence of a low-velocity sedimentary layer in the WB 
and the area to the west is unambiguously indicated by the strong 
reverberations observed in the RFs (e.g., Figs. 3b and 5b), and by 
the systematic spatial variation of up to 1.5 s delay of the first peak 
on the RFs (Fig. 6). The largest delay of the first peak is found at 
the depocenter of the WB, where the Phanerozoic sediments are 
the thickest (Fig. 1). A clear correlation between the delay times 
(Fig. 6) and the sediment thickness (Fig. 1) is revealed (Fig. 7). The 
delay times increase more rapidly for smaller thickness (Fig. 7) 
in response to the lower velocities. The change in the slope oc-
curs at about 1.5 km, which is probably the boundary between the 
low-velocity sedimentary layer and consolidated Phanerozoic sed-
imentary rocks. The estimated thickness of the low-velocity sedi-
mentary layer is consistent with the model used for producing the 
synthetic RFs (Table S1).

Fig. 5 shows cross sections of the stacked original and reverber-
ation-removed RFs along an E-W profile centered at 49◦N. Similar 
cross sections for the other four E-W profiles centered at 45-48◦N 
can be found in Figs. S21-S24, and those for all the 15 N-S profiles 
can be found at Figs. S25-S39. Strong reverberations are observed 
on the stacked RFs beneath the WB on the profiles created using 
the pre-reverberation-removed RFs (Fig. 5b). The wavelength of the 
reverberations (white vertical wiggles in Fig. 5b) increases in areas 
with thicker Phanerozoic sediments (Fig. 5a). Due to the unfor-
tunate fact that the depth of the second positive arrival (∼30-40 
km) is comparable to the expected depth of the Moho beneath 
stable continental areas, this arrival in the reverberating series 
(Fig. 5b) can easily be mis-identified as the P-to-S conversion from 
the Moho or a subducted continental slab.
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Fig. 5. Results of stacking migrated RFs in a 1-degree-wide E-W band centered at 
49◦N latitudinal line. (a) Thickness of Phanerozoic sediments in km. (b) Migrated 
original RFs. (c) Migrated reverberation-removed RFs. Pluses indicate the hand-
picked Moho doublet. The green curve marks the shallower interface, and the blue 
curve shows the deeper interface. The scale bar in (b) and (c) shows stacking am-
plitudes normalized by the maximum amplitude in the depth range of 30-75 km in 
the bins.

Fig. 6. Distribution of delay time of the first positive peak on the RFs.

3.2. Crustal thickness beneath the Superior Craton

On the cross sections produced using both the original (e.g., 
Fig. 5b) and reverberation-removed (Fig. 5c) RFs, a prominent pos-
itive arrival is observed at the depth of 30-45 km beneath the 
Superior Craton (Fig. 8), where a low-velocity sedimentary layer 
is absent and thus the RFs are not contaminated by the reverber-
ations. The amplitude of this arrival relative to that of the direct 
P-wave is about 0.05, which is about half of that observed on 
the stable portions of the Archean Kaapvaal and Zimbabwe cratons 
(Nair et al., 2006). Because this is the only continuous positive in-
5

Fig. 7. A cross plot of sedimentary layer thicknesses shown in Fig. 1 and the delay 
times of the first peak on the RFs shown in Fig. 6. The solid blue lines are results of 
best-fitting, and the dashed green line separates the loose and consolidated layers.

Fig. 8. (a) Resulting depth to the lower interface which is considered to be the 
petrological Moho. (b) Thickness of the lower crustal layer between the two in-
terfaces.

terface in the expected depth range of the petrological Moho under 
this area (Baird et al., 1995), we consider it to be the Moho. The 
agreement on crustal thickness between results from this study 
and previous active source seismic studies (e.g., Baird et al., 1995) 
indicates the reliability of the techniques that we utilized in the 
study.
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Fig. 9. Same as Fig. 5c but for different bandpass filtering corner frequencies. (a) 0.08-2.4 Hz; (b) 0.12-2.4 Hz; (c) 0.16-2.4 Hz; (d) 0.20-2.4 Hz. Note that for the purpose of 
comparison, the Pis and Pms arrivals obtained in the frequency band of 0.1-1.0 Hz (Fig. 5c) are plotted as pluses.
3.3. Crustal layering beneath the WB and the areas to the west

The WB and the neighboring areas to the west, which are 
covered by Phanerozoic sediments (Fig. 1), are characterized by 
a Moho doublet structure that is observed on the reverberation-
removed RF profiles (e.g., Figs. 5c and S21-S23). The deeper in-
terface, which is likely the petrological Moho (O’Reilly and Griffin, 
2013), has a depth ranging from about 50 to 80 km with a mean 
value of about 65 km beneath the WB, and the shallower one has 
a depth of 40-55 km (Fig. 8). In general, the thickness of the layer 
between the two interfaces is greater for areas with a thicker sedi-
mentary layer (Figs. 1 and 8b). This correspondence may suggest a 
possible causal relation between basin subsidence and crustal lay-
ering, as discussed below.

4. Discussion

4.1. Comparison with previous studies

The existence of a high velocity lower crustal layer beneath the 
WB has been suggested based on data from COCORP and Litho-
probe seismic reflection experiments (see summaries in Baird et 
al., 1995), which have a limited spatial coverage in the study area. 
Beneath the Superior Craton portion of the study area, our crustal 
thickness results agree well with those reported by Thurner et al. 
(2015) who imaged crustal structure using RFs from approximately 
the same stations. However, the thicknesses from the two studies 
are significantly different for the rest of the study area where a 
low-velocity sedimentary layer is present. The difference is most 
likely caused by a possible misidentification of the second positive 
pulse on the sedimentary multiple series as the P-to-S conver-
sion from the Moho, a possibility that has also been suggested by 
Schulte-Pelkum et al. (2017). The high degree of similarity between 
the cross sections produced using the original (pre-reverberation-
removal) RFs (e.g., Figs. 5b) and those presented in Thurner et al. 
(2015) further confirms this possibility.

The existence of a high velocity layer in the lower crust is con-
sistent with recent surface wave tomographic results. For instance, 
in the contiguous U.S., Schmandt et al. (2015) revealed that one of 
6

the two areas with the highest shear velocities in the lowest 11 
km of the crust is the WB and the region to its immediate west. 
This pattern is similar to the results of Shen and Ritzwoller (2016)
for velocities in the bottom 3 km thickness layer above the Moho. 
In addition, Shen and Ritzwoller (2016) found that the WB and 
surrounding areas possess the thickest high-velocity lower-crustal 
layer (up to 15 km thick with a shear velocity of 4.0 km/s or 
greater) in the entire contiguous U.S.

4.2. Frequency dependence of the RFs

It has long been recognized that crustal and mantle discon-
tinuities have a finite “sharpness” that can be quantified as the 
thickness of the layer with a seismic impedance gradient (Benz 
and Vidale, 1993; Bostock, 1999). In order for a discontinuity to 
be observed using P-to-S conversions, the thickness should be less 
than approximately half of the wavelength (λ) of the P wave (Bo-
stock, 1999). We filtered the original seismograms in 4 different 
frequency bands with corner frequencies of f1 = 0.08+(i-1)*0.04 
Hz (where i = 1, 2, 3, 4) and f2 = 2.4 Hz, computed the RFs and 
performed the stacking using the same parameters that we used 
for producing the results shown in Fig. 5. If we assume a Vp of 
7.2 km/s, the discontinuity cannot be detected if the thickness of 
the transitional layer is greater than 45, 30, 23, and 18 km for 
f1 = 0.08 (λ = 90 km), 0.12 (λ = 60 km), 0.16 (λ = 45 km), and 
0.20 (λ = 36 km) Hz, respectively. The results (Fig. 9) indicate that 
the interface at ∼40 km beneath both the WB and the Superior 
Craton can be consistently observed at all the frequencies, sug-
gesting that it is a sharp boundary with a gradient thickness of 
18 km or less that is characteristic of a “normal” Moho disconti-
nuity. In contrast, the deeper interface at ∼60 km beneath the WB 
is barely observable for f1 = 0.16 Hz (Fig. 9c) and non-observable 
for f1 = 0.20 Hz (Fig. 9d), indicating that the interface must have 
a gradient thickness of 18-23 km or greater. Such a gradual Moho 
may be attributed to eclogitization of the thickened lower crust 
(e.g., Bascou et al., 2001; Wittlinger et al., 2009).
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4.3. Constraints on subsidence models

A number of models have been proposed to explain the long-
term subsidence of intracontinental basins including the WB. The 
anomalously thick crust beneath the WB is inconsistent with the 
thermal contraction model (Sleep and Snell, 1976), which predicts 
a normal crustal thickness and an exponential rather than linear 
rate of subsidence (Baird et al., 1995). The thick crust and the 
existence of the high velocity lower crustal layer are also not in 
agreement with the crustal properties predicted by lithospheric 
necking (Armitage and Allen, 2010) which would result in a thin-
ner than normal crust beneath the WB.

Recent studies combining seismic reflection and gravity data for 
the Parnaiba, Michigan, and Congo basins (Daly et al., 2018; Watts 
et al., 2018) have confirmed the presence of a 7.x layer immedi-
ately above the Moho. Mostly on the basis of the existence of a 
linear gravity maximum observed after the removal of the grav-
ity effect of the sedimentary layers, these studies favor a model of 
subsidence resulting from cooling of mantle-derived igneous ma-
terial through dyking and basal underplating (Daly et al., 2018). 
The observed high velocity lower crustal layer beneath the WB, 
which developed in an existing orogenic belt (the THO), is sev-
eral times thicker than that observed for basins that developed 
on thick continental lithosphere (Watts et al., 2018). Additionally, 
while the subsidence rate of the basins is exponential which is 
consistent with thermal contraction (Sleep and Snell, 1976; Watts 
et al., 2018), that of the WB is mostly linear (Baird et al., 1995).

Results from this study for the WB are consistent with the con-
tinuous phase transition model of intracontinental basins (Haxby 
et al., 1976; Kaus et al., 2005). It has been established that tec-
tonic over-thickening of the crust can lead to the phase transi-
tion from gabbro (density = 3 g/cm3, Vp = 6.9 km/s) to eclogite 
(density = 3.5 g/cm3, Vp = 7.9-8.05 km/s) in the lower crust (e.g., 
Artyushkov and Baer, 1983; Kay and Kay, 1991; Kern et al., 1999). 
The area with the thickest lower crustal layer in the WB is ap-
proximately consistent with the area with the maximum Bouguer 
gravity anomaly after removing the gravitational effects of the sed-
iments (Mickus, 2007), an observation that provides independent 
evidence for the existence of a high density lower crustal layer in 
the WB.

Because the acoustic impedance for pure eclogite is higher than 
that of the upper-most mantle, the fact that a positive contrast 
in impedance from the crust to the mantle is observed beneath 
the WB suggests partial rather than full gabbro-eclogite transition. 
Partial gabbro-eclogite transition has been invoked by some pre-
vious studies to explain the subsidence of the Williston and other 
intracontinental basins (e.g., Haxby et al., 1976; Fowler and Nis-
bet, 1985; Kaus et al., 2005). Gabbro-eclogite transition can take 
place under normal crustal geothermal conditions if the crust is 
thicker than 50 km (Fowler and Nisbet, 1985; Kay and Kay, 1991), 
a threshold value that is pervasively observed beneath collisional 
belts such as the THO. In addition to eclogitization, garnet growth 
within a granulite facies in response to the decrease in crustal 
temperature after the ceasing of a collisional event can also in-
crease the density of the crust (Fischer, 2002). Such retrograde 
metamorphism has also been proposed for the formation of the 
7.x layer observed in the lower-most part of the crust beneath the 
Rocky Mountains and the central and eastern U.S. (Rumpfhuber 
and Keller, 2009; Keller, 2013; Schulte-Pelkum et al., 2017). Sim-
ilarly, beneath the Tibetan Plateau, an ∼20 km thick high density, 
high velocity layer in the depth range of ∼63-83 km was suggested 
to be eclogitic (Wittlinger et al., 2009).

Long-term cooling induced retrograde metamorphic reactions in 
the lower crust, mainly garnet growth and gabbro eclogitization 
(Bousquet et al., 1997), have been utilized to explain the progres-
sive reduction of the ratio between surface relief and crust root 
7

magnitude beneath collisional mountains (Fischer, 2002). Gabbro-
eclogite transformation was proposed to be responsible for con-
tinental crust subsidence in old fold belts such as the Urals and 
Appalachians (Artyushkov and Baer, 1983). The ratio approaches 
zero for Proterozoic collisional zones due to the progressive ero-
sion of the mountain belt and the consequent uplift of the Moho 
(Fischer, 2002). Our observations suggest that under some circum-
stances, the rate of mass increase due to eclogitization or garnet 
growth in the lower crust may exceed that of the mass decrease at 
the surface from erosion. Consequently, the bottom of the crust 
subsides rather than uplifts in order to maintain isostatic equi-
librium, leading to the formation of intracontinental basins above 
the thickened crust (Bousquet et al., 1997). Density increase of the 
lower crust has also been suggested in modern rift zones through 
magmatic intrusion (Thybo and Nielsen, 2009).

Although the existence of a high density lower crustal layer de-
veloped in the over-thickened crust of the THO can explain the 
long-term linear subsidence of the WB, the question of why the 
basin formed in this particular segment of the THO remains unan-
swered. Some previous studies attributed this to the fact that the 
WB is in the narrowest section of the THO where the maximum 
crustal shortening might have occurred (Baird et al., 1995). The 
reason for its near circular shape instead of being elongated along 
the THO is equally puzzling. We speculate that a possible mech-
anism for the circular shape is a positive feedback between sub-
sidence and densification metamorphism, i.e., once eclogitization 
and/or garnet growth reactions have started in a localized area, 
subsidence of this area leads to an accelerated rate of metamor-
phism, which further enhances subsidence. Alternatively, the area 
that subsided could be seated on a passing mantle plume, which 
might have induced eclogitization in the deformed crust in the 
THO and led to subsidence, a process that has been proposed for 
the two-phase rifting of the New Madrid Seismic Zone in the cen-
tral U.S. (Cox and Van Arsdale, 2002). In addition, a plume can 
produce an underplated layer beneath the original Moho, forming 
a high velocity lower crust. This mechanism has been proposed 
for the Midcontinent Rift which is located to the east of the study 
area (Zhang et al., 2016). Under this model, the Pis phase discussed 
above would represent the original (pre-underplating) Moho, and 
the Pms phase would reflect the bottom of the underplated layer.

4.4. Low mantle density beneath the thin crust of the Superior Craton

The portion of the Superior Craton adjacent to the THO is un-
derlain by a crust with a minimum thickness of approx. 30 km, 
which is anomalously thin for crust in stable cratonic areas. This 
area of thin crust is also observed by Thurner et al. (2015) and 
several other studies of different spatial scale (e.g., Laske and Mas-
ters, 1997; Frederiksen and Delaney, 2015). Further to the east, the 
crust beneath the Superior Craton near the western boundary of 
the Midcontinent rift is about 35-40 km (Zhang et al., 2016) which 
is normal to other typical continental areas. While an in-depth in-
vestigation of the causes of this anomalously thin crust is beyond 
the scope of this study, which is focused on the WB, simple cal-
culations based on Airy’s hypothesis of isostasy suggest that the 
crust beneath this area must be underlain by a low-density up-
per mantle. The amount of predicted mantle density reduction is 
a function of the thickness of the anomalous mantle layer. A re-
gional seismic tomography study (Bollmann et al., 2019) suggests 
a low velocity zone extending to the depth of ∼200 km beneath 
this area. Under the assumption that this low velocity feature also 
has a low density, the estimated density anomaly is about −0.8%. 
The lower density and corresponding lower velocities in the upper-
most mantle are consistent with the observed small amplitudes 
of the P-to-S conversions from the Moho in this area relative to 
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other typical cratonic areas such as the Kaapvaal Craton in south-
ern Africa (Nair et al., 2006).

5. Conclusions

By applying a recently developed procedure to remove rever-
berations in P-to-S receiver functions caused by a low-velocity sed-
imentary layer, the petrological Moho and an intracrustal interface 
beneath the Williston Basin and adjacent areas with a sedimen-
tary cover are revealed. The spatial correspondence between the 
thickness of the lower crustal layer and that of Phanerozoic sed-
iments suggests that continuous density-increasing metamorphic 
reactions in the lower crustal layer played an important role in 
the long-term subsidence of the basin. An increase in lower crustal 
density through eclogitization or garnet growth, which was prob-
ably induced by continuous cooling of the crust that was greatly 
thickened by the Proterozoic collision between the Wyoming and 
Superior cratons, is a plausible cause of the increased crustal den-
sity, and consequently the ultimate mechanism for the formation 
and evolution of the Williston Basin.
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