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1 Linear(ized) System Modeling Using Laplace Transformation

Laplace transformation provides a powerful means to solve linear ordinary differential equations in
the time domain, by converting these differential equations into algebraic equations. These may
then be solved and the results inverse transformed back into the time domain. Tables of Laplace
transforms are available to facilitate this operation.

Laplace transformation belongs to a general area of mathematics called operational calculus
which focuses on the analysis of linear systems.

1.1 Laplace Transformation

Laplace transformation belongs to a class of analysis methods called integral transformation which
are studied in the field of operational calculus. These methods include the Fourier transform, the
Mellin transform, etc. In each method, the idea is to transform a difficult problem into an easy
problem. For example, taking the Laplace transform of both sides of a linear, ODE results in an
algebraic problem. Solving algebraic equations is usually easier than solving differential equations.
The one-sided Laplace transform which we are used to is defined by equation (1), and is valid over
the interval [0,∞). This means that the domain of integration includes its left end point. This is
why most authors use the term 0− to represent the bottom limit of the Laplace integral.

L{f(t)} =
∫ ∞

0−
f(t)e−stdt (1)

The key thing to note is that Equation (1) is not a function of time, but rather a function of
the Laplace variable s = s + jω. Also, the Laplace transform only transforms functions defined
over the interval [0,∞), so any part of the function which exists at negative values of t is lost! One
of the most useful Laplace transformation theorems is the differentiation theorem.

Theorem 1 The Laplace transform of the first derivative of a function f is given by

L
{

df

dt

}
= sF (s)− f(0−) (2)

Proof 1 Integration of Equation (2) by parts yeilds

L
{

df (t)
dt

}
=
∫ ∞

0−

df (t)
dt

e−stdt

= f
(
0−
)
e−st |∞0−+ s

∫ ∞

0−
f (t)e−stdt

= sF (s)− f
(
0−
) ‖ (3)
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By repeating the integration by parts, higher derivatives may be similarly transformed. Thus given

Aẍ + Bẋ + Cx = f(t) (4)

we have by taking the Laplace Transform of both sides of Equation (4)

A
(
s2X (s)− sx

(
0−
)− ẋ

(
0−
))

+ B
(
sX (s)− x

(
0−
))

+ CX (s) = F (s) (5)

or
As2X (s) + BsX (s) + CX (s) = F (s) + A

(
sx
(
0−
)
+ ẋ

(
0−
))

+ Bx
(
0−
)

(6)

The difficulty arises when f(t) has either a step function, or a impulse (Dirac delta) function in it.
These have the following definitions.

Definition 1
U(t) =

{
1 for t > 0
0 for t ≤ 0 (7)

Definition 2
δ(t) =

{∞ for t = 0+

0 otherwise (8)

Hence, the unit-step function “turns on” at the right edge (t = 0+) of zero, and the Dirac delta
function turns on and off at the same place. An additional property of the Dirac delta function is∫ ∞

−∞
δ(t)dt = 1 (9)

Hence, the area under the “curve” defined by the Dirac delta, or impulse function is unity. The
unit-step and the Dirac delta function are derivative and anti-derivative of one another.

δ(t) =
dU(t)

dt
(10)

Both the unit-step and Dirac delta belong to a class of functions called generalized functions. The
term “generalized” stems from the fact that these functions don’t satisfy the continuity requirements
of regular functions. This fact not withstanding, however, we may define the following relationships:

dδ(t)
dt

=
d2U(t)

dt2

d2δ(t)
dt2

=
d3U(t)

dt3

...
dnδ(t)
dtn

=
dn+1U(t)

dtn+1
(11)
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1.2 Additional properties of the Dirac delta function

An interesting property of the Dirac delta function is revealed by taking the Laplace transform of
both sides of equation (10).

L{δ(t)} =
∫ ∞

0−
δ(t)e−stdt = L

{
dU(t)

dt

}
=
∫ ∞

0−

dU(t)
dt

e−stdt

= U(t)e−st

∣∣∣∣∞0− + s

∫ ∞

0−
U(t)e−stdt

= 0 + s

(∫ 0+

0−
(0) e−st +

∫ ∞

0+
(1) e−st

)
= 1 (12)

This is the so-called filtering property. In general,∫ c

a
f(t)δ(t − b)dt = f(b) (13)

for a < b < c. The filtering property may be proved as follows:

Proof 2 Equation (13) may be proved for a < b < c by noting that

∫ c

a
δ(t − b)f(t)dt = lim

ε→0

[∫ b−ε

a
(0)f(t)dt +

∫ b+ε

b−ε
δ(t − b)f(t)dt +

∫ c

b+ε
(0)f(t)dt

]

= lim
ε→0

∫ b+ε

b−ε
δ(t − b)f(t)dt (14)

Letting τ = t − b, integrating equation (14) by parts, and noting equation (10), we have

lim
ε→0

∫ b+ε

b−ε
δ(t − b)f (t) dt = lim

ε→0

∫ +ε

−ε
δ(τ)f (τ + b) dτ

= lim
ε→0

[
U (τ) f (τ + b)|+ε

−ε −
∫ +ε

−ε
U(τ)f ′ (τ + b) dτ

]
(15)

The last term in the brackets in Equation (15) vanishes because U(t) is zero in the interval of
integration. Thus, we have

Lim
ε→0

∫ b+ε

b−ε
δ(t − b)f (t) dt = lim

ε→0
[U (+ε) f (b + ε)− U (−ε) f (b − ε)] (16)

However, since the limit of U(t) as t approaches zero from the left is zero, and the limit of U(t) as
t approaches zero from the right is 1, we have

lim
ε→0

∫ b+ε

b−ε
δ(t − b)f (t) dt = lim

ε→0
U (+ε) f (b + ε) = U

(
0+) f (b+) = f (b) (17)

as claimed. ‖
The filtering property turns out to be extremely useful in both analytical and experimental

vibration analysis, as well as many other areas in applied mathematics.

1.3 Use of Dirac Delta Function in Differential Equations

In the context of an equation of motion where forces or moments are summed to equal and inertial
force or moment (Σ�F = m�a), the Dirac delta function may be thought to carry the units of 1/time,
or 1/area, etc. In fact, it may be, and is, thought of as a distribution – albeit a very narrow one.
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In other words, the force imparted by the delta function is proportional to its integrated area. This
means that the Dirac delta function is only useful to describe point-wise or impulsive forces when
integrated over the applicable independent variable. Thus, integral transform techniques, such as
the Laplace transform, provide the most natural means to utilize the Dirac delta function. The
shifting and filtering properties are useful in specifying the effect of an impulsive force applied to a
body which may already be in motion.

1kg 10 (t–5)

x

K

B

Figure 1. Impulsively forced spring-mass-damper system – use Laplace transformation

Example 1 Consider the system shown in Figure 1, which consists of a 1 kg mass restrained by
a linear spring of stiffness K = 10 N/m, and a damper with damping constant B = 2 N-s/m. The
system is forced at time t = 5 seconds by an impulsive force of magnitude 10 N-s. The system has
initial conditions x(0) = 1 m, and ẋ(0) = 0.

Solution:

Kx

Bx
.

5)

Figure 2. System free-body diagram

The free body diagram of the system is shown in Figure 2. Writing the equation of motion, we
obtain

ẍ + 2ẋ + 10x = 10δ(t − 5) (18)

Taking the Laplace transform of Equation (18), we have
(
s2 + 2s + 10

)
X (s) = 10e−5s + s + 2 (19)

so

X (s) =
10e−5s + s + 2
s2 + 2s + 10

(20)

Taking the inverse Laplace transform of Equation (20), we obtain [you should show this]

x (t) =
10
3

e−(t−5) sin (3 (t − 5))U(t − 5) + e−t
(
cos (3t) +

1
3
sin (3t)

)
(21)

4



t 1086420

2

1.5

1

0.5

0

-0.5

Figure 3. System response to time-shifted impulse

The time response of the system is shown in Figure 3. As you can see, the displacement of the
mass has decayed nearly to zero when the impulsive force is applied – causing additional motion.

2 Dealing With Nonlinearities

The concept of linearity is one of the most important ideas in engineering, physics, and applied
mathematics. The difference between a linear and nonlinear system is often the difference between
finding a solution or not. Recently, in the past 25 years or so, engineers have been made aware
of the existence of chaos in nonlinear systems. This awareness has spawned a whole new branch
of applied mathematics – the study of chaotic systems. Unfortunately, about 99% of the available
mathematical techniques developed in the last 300 years are only useful for linear systems! What
are we going to do about this limitation? Well, we’re going to linearize the nonlinear terms in our
mathematical models as we encounter them. But first, let us carefully define the term linear.

Definition 3 A function, or operation f(x) is said to be linear if and only if for f(x1) = y1, and
for f(x2) = y2, we have f(x1+x2) = y1+y2. In addition, we must have that f(kx) = kf(x) for any
constant k.Definition 2.3 is somewhat more restrictive than the definition of a line [Why?] What do
we mean by the term linear operation? The most common linear operations that you will encounter
in this course are integration, including Laplace transformation, and differentiation. What are the
consequences of linearizing a nonlinear function or operation?

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3 x

f(x) = x

f(x) = x - x3

6

f(x) = sin x

Figure 4. Effect of linearization.

Example 2 A commonly encountered nonlinear term is sin(x). For x “near” zero, sin(s) ≈ x
according to Taylor’s series. If we need more accuracy we can keep the first two terms in the Taylor
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series expansion, but then we have a nonlinear system again. A comparison of sin(x) and its one
and two term Taylor series expansions is shown in Figure 4. Clearly, the linear approximation of
sin(x) rapidly becomes inaccurate for large magnitudes of x.

2.1 Linearizing Nonlinear Differential Equations

As mentioned earlier, it may be impossible to analytically solve a nonlinear ODE, and it is im-
possible to control a nonlinear system using the methods covered in this course. However, we can
linearize the nonlinear terms in a nonlinear system, and obtain an approximate solution which will
be valid for small excursions of the dependent variable about an operating point.

Definition 4 A differential equation is said to be nonlinear if any of its terms are nonlinear in
the dependent variable, or any of the derivatives of the dependent variable with respect to the
independent variable.

Definition 5 A system is said to be in a state of equilibrium if and only if its dependent variable
is invariant with respect to time. In other words, all terms which are explicit functions of time,
and all terms which are time-derivatives of the dependent variable must vanish.

The dependent variable may be position, or velocity in dynamical systems. For example, a pen-
dulum is known to be in equilibrium when in its vertical position. A sky diver is also in equilibrium
when he reaches terminal velocity.

Thus, to locate the equilibrium point(s) of a system, set all time-derivatives of the dependent
variable to zero, and ignore all explicit functions of time. Then, solve the resulting nonlinear
equation for the equilibrium value of the dependent variable. Once the equilibrium point has been
determined, the nonlinear terms may then be linearized about this point, and substituted back
into the original equation of motion. If the equation of motion is linearized about an equilibrium
point, any constant forcing terms will cancel out. If the equation of motion is linearized about any
other point, there will still be some constant forcing terms in the equation. This makes sense if you
realize that added force is required to hold a mechanism in any position other than an equilibrium
position.

x

t)

g = 10 m/s2

1 kg

Figure 5. Nonlinear example

Example 3 A mass of 1 kg is suspended by a nonlinear spring and damper as shown above. The
tension force resisting the downward pull of gravity in the spring and damper is given by FT =
− (2ẋ3 + e2x

)
Newtons, where x is measured from the unstretched length of the spring. The mass

is subjected to an impulsive force of 10δ(t) Newtons as shown. Find: (a) the nonlinear equation of
motion, (b) the equilibrium point x̄, (c) the linearized equation of motion in terms of the incremental
deviation, x̂, from the equilibrium point, and (d) the solution to the linearized equation of motion
if x̂(0) = ˙̂x(0) = 0.
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Solution:

The nonlinear equation of motion is given by

ẍ + 2ẋ3 + e2x = 10 + 10δ (t) (1)

At equilibrium, we have ẋ = ẍ = 0, thus the equilibrium equation is given by

e2x̄ = 10 (2)

Hence the equilibrium point is given by

x̄ =
1
2
ln (10) (3)

Linearizing, we obtain:
2ẋ3 ≈ 2 ˙̄x3 + 6 ˙̄x2 (ẋ − ˙̄x) = 0 (4)

since ˙̄x = 0, and
e2x ≈ e2x̄ + 2e2x̄ (x − x̄) = 10 + 20x̂ (5)

Substitution of the above into the original nonlinear equation of motion, and noting that x =
x̄ + x̂(t), yields the linearized EOM

¨̂x + 20x̂ = 10δ(t) (6)

In the Laplace domain, we have

X̂(s) =
10

s2 + 10
(7)

Hence, taking the inverse Laplace transform of Equation (7) yields

x̂(t) =
10√
20

sin
√
20tU(t) (8)

3 Using MapleTM To Solve ODEs In The Laplace Domain

The symbolic mathematics program Maple is available on the UNIX server (Saucer, for example)
and the Macintosh server. It is also available on the PC servers as well. Maple is an extremely
powerful means to perform computer algebra as well as numerical solutions in a manner similar
to Mathematica. There are some notable differences between Maple and Mathematica, however.
Maple has an extensive on-line help facility which may be accessed at the command prompt by
entering ?subject. You are encouraged to explore the capabilities of Maple beyond what is required
in ME307, but for now, we shall focus on a relatively small subset of Maple’s capabilities. Specifi-
cally, we will use Maple to invert Laplace transforms, and plot the resulting time-domain solution.
The following example will illustrate this process, but you will have to do some browsing through
Maple’s functions via the on-line help before you become comfortable with Maple’s syntax.

Example 4 Determine the unit step response for the system with transfer function given by
T (s) = 10(s+10)

s2+6s+25
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Solution:

The following commands are entered at the command line within Maple. First, Maple is executed
(on UNIX systems) by entering ”xmaple” at the prompt. Comments (non executed lines) are
denoted by %. Suppose we forgot what the inverse Laplace command does, or that it requires us
first to issue the readlib(laplace) command. ?invlaplace tells us what we need. The following series
of commands, each of which is followed by a semicolon except the ? command, will be echoed to
the screen (not shown here) by Maple. The end result is the plot shown below.

>?invlaplace

>readlib(laplace);
>T:=10*(s+10)/(s^2+6*s+25);
>R:=1/s;
>c:=invlaplace(R*T,s,t);
>plot(c,t=0..10);

t 1086420
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Figure 6. Maple plot

There are several key commands with which one must become familiar to navigate Maple. Issue
the following commands to learn about some of these functions: ?with, ?readlib, ?allvalues, ?solve,
?fsolve, ?dsolve, ?int, ?diff, ?simplify, ?expand, ?plot, ?odeplot, ?laplace, ?invlaplace. For example,
issuing the ?Heaviside command yields the following output: FUNCTION: Dirac - the Dirac delta
function FUNCTION: Heaviside - the Heaviside step function CALLING SEQUENCE: Dirac(t)
Dirac(n, t) Heaviside(t) PARAMETERS:

t - algebraic expression
n - nonnegative integer
SYNOPSIS:
-The Dirac(t) delta function is defined as zero everywhere except at $t = 0$
where it has a singularity. It has an additional property, specifically:
Int(Dirac(t),t = -infinity..infinity) = 1
-Derivatives of the Dirac function are denoted by the two-argument Dirac func-
tion. The first argument denotes the order of the derivative.
For example, diff(Dirac(t), t$n) will
be automatically simplified to Dirac(n, t) for any integer n.
-The Heaviside(t) unit step function is defined as zero for t < 0, 1 for
t >= 0. It is related to the Dirac function by
diff(Heaviside(t),t) = Dirac(t).
-These functions are typically used in the context of integral transforms such
as laplace(), mellin() or fourier().
SEE ALSO: laplace, mellin, fourier
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