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An improved point-by-point inscription method is proposed to fabricate long period fiber gratings

(LPFGs) by using a laser operating at 800 nm with 35 fs duration pulses. The sensitivity to misalignment

between the core and the focus is reduced by scanning a rectangular part on the fiber. LPFGs with an

attenuation depth of 20 dB are achieved within the wavelength range of 1465–1575 nm. Characteriza-

tion of the temperature sensitivity and thermal stability of the LPFGs is presented. A 5.6 nm wavelength

shift and a 1.2 dB decrease in the attenuation peak are observed following heat treatment at 600 1C for

4 h. The fabricated LPFGs are used as refractive index sensors. The effect of heat treatment on the

response of the LPFGs to refractive index changes is also studied.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Long period fiber gratings (LPFGs) are widely used in optical
communications and sensing fields. In sensing fields, LPFGs
present obvious advantages such as high sensitivity to tempera-
ture and external refractive index changes [1]. Various methods of
LPFGs fabrication have been developed, including irradiation
by the output from ultraviolet lasers [2,3], and CO2 lasers [4],
exposure to electric arcs [5] and mechanical pressure [6].
Recently, femtosecond lasers have been widely used to fabricate
optical devices in transparent materials [7,8].

LPFGs fabricated by an IR (800 nm) femtosecond laser have
superior aging characteristics and high resistance to thermal
decay [9], but the attenuation depth is only about 8 dB with a
relatively large background loss in the irregular spectrum. By
controlling the alignment of the focus within the fiber core along
the length of the fiber, a more regular transmission spectrum is
achieved [10,11]. For the aforementioned IR femtosecond laser
inscription method [9–11], the transmission spectrum is very
sensitive to the misalignment between the fiber core and the
focus of the inscribing beam, which is difficult to control
accurately.

The thermal stability and characteristics of LPFGs should be
considered when they are used as sensors. The refractive index
ll rights reserved.
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modulation of the LPFGs will be reduced [12] and the sensitivity
to external refractive index changes will be different after heat
treatment. A recent paper reports the thermal characteristics of
LPFGs with the changes of external refractive indexes [13].
However, the effect of heat treatment on the refractive index
(RI) sensing has not been studied.

In this paper, an improved point-by-point inscription method
is adopted to reduce the sensitivity to misalignment between the
core and the focus by scanning a rectangular part of the fiber.
Using this method, LPFGs with the attenuation depths of 20 dB
are obtained, which is the highest reported for LPFGs fabricated
by IR femtosecond lasers. Characterization of the thermal
response and thermal stability of the fabricated LPFGs are
presented. The effect of heat treatment on the LPFG refractive
index sensitivity is also studied. It is demonstrated that LPFGs
fabricated by exposure to the output from femtosecond lasers can
be used as refractive index sensors at high temperatures.
2. Experimental setup

A schematic diagram of the experimental setup is shown in
Fig. 1. An fs laser (Spectra-Physics) with a pulse width of 35 fs is
used to fabricate the LPFG sensors. The center wavelength and
repetition rate of the laser are 800 nm and 1 kHz, respectively. A
combination of a half-wave plate and a polarizer is used to reduce
the laser power, and then several neutral density (ND) filters
are used to further reduce the laser power to the desired values.
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Fig. 1. Schematic diagram of the experimental setup for LPFG fabrication and detection.

Fig. 2. (a) Beam path during the laser inscribing process and (b) microscope image

of an inscribed LPFG.
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The laser beam is focused on the fiber core by a 20� microscopic
objective (NA¼0.45) and the beam diameter at the focal plan is
about 2 mm. The pulse energy is within the range of 0.1–0.5 mJ.
The optical fiber used in this experiment is an enhanced telecom
fiber SMF-28e (Corning, Inc.) with a core diameter of 8.2 mm, a
cladding diameter of 125 mm and a numerical aperture of 0.14.
The fiber samples are translated by a 6-axis positioning system
with a resolution of 1 mm.

The transmission spectrum of the fiber grating is monitored by
the combination of a tunable laser (Agilent81980A, wavelength
range 1465–1575 nm) and an optical power meter (Agilent
81636B) during the inscription process. The tunable laser scans
through its wavelength range (1465–1575 nm) at the rate of
0.5 nm per step and the power meter detects the power trans-
mitted through the grating.

The polymer coating of the fiber sample is removed and
cleaned before the LPFG fabrication. The back-reflected light from
the fiber is monitored by a CCD camera and the laser beam is
considered to be focused on the center of the fiber core when the
image of the back-reflected light becomes a linear shape along the
fiber axis [14]. The linear shape would be separated into two parts
if there is a deviation between the focal point and the center of
the fiber core. The fiber is then moved vertically to the fiber axis
away from the center of the fiber core by 8 mm in the focal plane.
This position is the actual scanning starting point. The distance of
8 mm is intended to ensure that the scanning area covers the
whole fiber core during the fabrication process. Fig. 2 shows the
beam path during the laser inscribing process with the step of
2 mm and the microscope image of the fabricated fiber. A
rectangular area of 16� L mm is formed after the laser scanning,
where L is half of the grating period (duty ratio is 0.5). The
scanning length perpendicular to the axis of the fiber is 16 mm, as
compared with the fiber core diameter of 8.2 mm. It ensures that
the focused beam scans over the whole fiber core in the
y-direction as shown in Fig. 2(a), and reduces the misalignment
sensitivity as reported in Ref. [9].
3. Results and discussion

3.1. Effects of pulse energy, grating length and heat treatment on

LPFG transmission spectra

During the inscription process, the translation speed, grating
period and duty ratio are 50 mm/s, 436 mm and 0.5, respectively.
Fig. 3 shows the transmission spectra of LPFGs fabricated with
irradiation pulse energies of 0.16, 0.24, 0.32, 0.4 and 0.48 mJ. All
gratings have the same length of 25.2 mm. The transmission loss
reaches a maximum with the increase in pulse energy (0.16–
0.32 mJ), and then declines with further increase in pulse energy
(0.32–0.48 mJ). The attenuation band has a red-shift with increas-
ing irradiation fluence, i.e., with the increase in refractive index
modulation, which is in agreement with the coupled mode theory
[15]. For irradiation pulse energy of 0.32 mJ, the maximum
transmission attenuation of 20 dB is obtained at 1525.8 nm and
the background loss is only 1 dB. The translation speed is known
and the route of scanning path is certain, hence, the time required
for each LPFG fabrication can be estimated. It takes about 35 min
to process one LPFG.

After the laser beam propagated through a series of optics, the
pulse duration is spread to about 50 fs due to the dispersion effects,
which is measured before the objective lens. The corresponding
ablation threshold fluence of silica is measured to be about 3.6 J/cm2.
However, there isn’t a grating signal when the irradiation fluence is
3.6 J/cm2. Fig. 4 shows the transmission spectra of LPFGs with
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Fig. 4. Transmission spectra of LPFGs with different grating lengths.
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Fig. 3. Transmission spectra of LPFGs fabricated at different laser pulse energies.
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different lengths for the same irradiation pulse energy of 0.12 mJ. The
corresponding irradiation fluence is 3.8 J/cm2, a little higher than
the ablation threshold fluence. The transmission loss increases with
the increase in grating length and reaches maximum with the length
of 39.24 mm, while the maximum transmission attenuation is only
10 dB. When the grating length is further increased to 40.11 mm, the
attenuation peak begins to decrease for the over-coupling occurs
based on the coupled mode theory. Thus, for a given grating period
and duty ratio, both the pulse energy and the grating length should
be considered during the fabrication process for a high-quality LPFG.
The inscription time is about 55 min for the LPFG with a length of
40.11 mm.

During the experiments we also tried to fabricate the LPFGs with
various periods in order to achieve significant grating signal in the
limited wavelength range of our tunable laser (1465–1575 nm).
After many trials, it is found that the maximum attenuation peak is
around the center of the wavelength range of the tunable laser with
proper pulse energy and grating length when the grating period is
436 mm.

Some regular damage occurred in the cladding area near the
incident surface because the used laser fluence was greater than
the ablation threshold, as shown in Fig. 2(b). The refractive
indices of both the fiber core and cladding are changed after the
irradiation, since the energy is absorbed by both the fiber core and
cladding [2,3,16]. The details of the refractive index modification
are still being investigated by using the plasma model proposed
by the authors [17].

An LPFG with a length of 25.2 mm is put into an electric Muffle
furnace to test the temperature sensitivity. The LPFG has a
maximum transmission attenuation of 20 dB around 1525.8 nm.
The temperature changed from 30 to 400 1C at a step of 20 1C
every 5 min. The peak of the attenuation band has a red-shift
when the temperature increases, as shown in Fig. 5. The mea-
sured temperature sensitivity is 0.091 nm/1C.

LPFG with background loss of 0.3 dB and attenuation peak
around 20 dB is achieved by selecting the appropriate laser
fluence and alignment between the inscription focal and the fiber
core, as shown in Fig. 6(a). However, background loss always
varies from one LPFG to another, because of the motion-stage
error, the fiber fabrication error and the laser fluence fluctuations.

An LPFG with background loss around 2 dB is put into the Muffle
furnace for 4 h at 600 1C and the background loss is reduced to
0.4 dB after the heat treatment. Furthermore, the heat treatment
leads to a 5.6 nm wavelength shift and a 1.2 dB decrease in the
attenuation peak, as shown in Fig. 6(b). The highest working
temperature of the LPFG inscribed by the fs laser is much higher
than that of LPFGs fabricated by157 nm F2-lasers [3].

3.2. Response to RI changes of the LPFG

The response of a 25-mm-long LPFG to refractive index changes
is first investigated without heat treatment. All RI changes tests are
at room temperature. The LPFG is fixed on a glass plate to avoid
bending-induced signal change. Then, the glass plate is put into
different liquids and the transmission spectra are recorded. The
liquids are sucrose solution with different concentrations (0%, 30%,
35%, 40%, 45%, 50%, 55% and 60%), and their corresponding RI are
1.3330, 1.3902, 1.3997, 1.4096, 1.4200, 1.4307 and 1.4418, respec-
tively. The device is cleaned by deionized water and air dried after
each test of one concentration. The LPFG is put into the Muffle
furnace, whose temperature is set at 400 1C for 4 h. After the heat
treatment, the LPFG is left at room temperature for 24 h and then
the response of the LPFG to RI changes is investigated.

When the surrounding refractive index is changed from nex to
nex, the wavelength shift dl0 can be expressed as [18]:

dl0ffi
u2
1l

3
0L

8p3nclr3

1

n2
cl�n2

ex

� �1=2
�

1

n2
cl�n2

ex

� �1=2

2
64

3
75 ð1Þ



-20

-15

-10

-5

0

1460

-20

-15

-10

-5

0

T
ra

ns
m

is
si

on
 (

dB
)

Wavelength (nm) Wavelength (nm)

Before heat treatment

After heat treatment

1480 1500 1520 1540 1560 15801460 1480 1500 1520 1540 1560 1580

Fig. 6. Transmission spectra of the LPFGs with various background loss: (a) an LPFG with background loss around 0.3 dB and (b) an LPFG with background loss around 2 dB
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where l0 is the resonance wavelength in air, ncl is the cladding
refractive index, r is the cladding radius, and uN is the mth root of
the Bessel function J0. Fig. 7 shows the wavelength shift of the
LPFG with respect to RI changes. The numerical calculation is
based on Eq. (1). A blue-shift is observed in the transmission
spectra, which is in good agreement with the numerical calcula-
tion. The wavelength shift is more accordant with the numerical
calculation curve after the heat treatment. Heat treatment causes
a change in refractive index modulation of the grating and more
stable grating can be achieved by heat treatment [13]. As a result,
the LPFG sensor is more reliable after a proper heat treatment for
RI detection.
4. Conclusions

In this study, an improved point-by-point inscription method
is developed to make LPFGs with attenuation peak up to 20 dB by
using a 800 nm, 35 fs laser. The temperature sensitivity of the
LPFG is 0.091 nm/1C and it shows high temperature stability at
600 1C. Theoretically, the LPFG sensors fabricated by our proposed
method can stand 1200 1C, which still needs further experimental
verification. As an RI sensor, the LPFG becomes more stable after
the heat treatment. The results present guidelines to make the
LPFGs as temperature sensors and stable refractive index sensors.
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