1. A detailed sketch of the physical elements of the problem with all relevant positions clearly labeled for all states (e.g., initial and final). For example, in a gravitational problem involving two objects, the initial and final y should be shown for each particle with full subscripts uniquely identifying them: $\mathrm{y}_{1 \mathrm{i}}, \mathrm{y}_{1 \mathrm{f}}, \mathrm{y}_{2 \mathrm{i}}, \mathrm{y}_{2 \mathrm{f}}$, and the $\mathrm{y}=0$ level (Note: "should" \approx "must"). Some of these can be added as you solve the problem, but a diagram comes first even if it is initially incomplete.
2. A fundamental equation must appear, e.g., $\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}=\left(\mathrm{W}_{\text {other }}\right)_{\mathrm{i}+\mathrm{f}}$.
3. Write a expression for mechanical energy where kinetic energies of all particles in the system and each of the potential energies due to conservatives forces are identified. For example, if gravity and a spring act on a single particle, one writes $\mathrm{E}=\mathrm{K}+\mathrm{U}_{\mathrm{g}}+\mathrm{U}_{\mathrm{s}}$ or $\mathrm{E}=1 / 2 \mathrm{mv}^{2}+\mathrm{mgy}+1 / 2 \mathrm{ks}{ }^{2}$. Include the work done by OTHER forces in $\mathrm{W}_{\text {other }}$. If no other force acts except those already accounted for in potential energy, $\left(W_{\text {other }}\right)_{\text {i-f }}$ can be zeroed out. But check and verify your decisions!
4. If more than one potential acts (e.g., gravity and a spring), each potential should appear on both sides of the equation. Write out the explicit mathematical form for the potentials, with appropriate initial or final subscripts, e.g., $\mathrm{mgy}_{\mathrm{i}}$ for the initial gravitational potential energy. When you use such position-dependent formulae, you must clearly include the initial and final position symbols in your diagram (preferably with their value, e.g., $y_{i}=+H$ and $s_{f}=-d$), along with the location of the reference zero value, e.g., $\mathbf{y}=0$.

For example, consider the initial state of a particle at rest that is to be launched from a spring of compression d at a vertical distance h below the $\mathrm{y}=0$ level in a gravitational field, the following steps should appear: $\quad \mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\mathrm{f}} \quad$ because $\left(\mathrm{W}_{\text {other }}\right)_{i-f}=0$
$\mathrm{K}_{\mathrm{i}}+\left(\mathrm{U}_{\mathrm{g}}\right)_{\mathrm{i}}+\left(\mathrm{U}_{\mathrm{s}}\right)_{\mathrm{i}}=$ analogous final-state expression
$1 / 2 m X_{i}^{2}+\mathrm{mgy}_{\mathrm{i}}+1 / 2 \mathrm{ks}_{\mathrm{i}}^{2}=$ analogous final-state expression
$\mathrm{mg}(-\mathrm{h})+1 / 2 \mathrm{k}(-\mathrm{d})^{2}=$ analogous final-state expression
5. After they appear in your diagram, go ahead and substitute the algebraic values shown into your mathematics. Do not zero out a term unless your diagram supports it!

As an example, consider an Atwood machine with $M>m$ and a massless pulley. Block M starts from rest and falls onto a spring (spring constant k), from an initial height h above it. When M is released, block m is pulled upward by an additional external force whose magnitude P equals half the block's weight magnitude. What is the spring's maximum compression d ?

$$
\begin{aligned}
& E_{f}-E_{i}=\left(W_{\text {other }}\right)_{i-f} \quad \Rightarrow \quad E_{f}=E_{i}+\left(W_{P}\right)_{i-f} \\
& 1 / 2 M X_{f}^{2}+1 / 2 m X_{f}^{2}+\left[M g Y_{f}+m g y_{f}+1 / 2 k s_{f}^{2}\right] \\
& =1 / 2 M X_{i}^{2}+1 / 2 m X_{i}^{2}+\left[M g X_{i}+m g X_{i}+1 / 2 k X_{i}^{2}\right]+\overrightarrow{\mathbf{P}} \cdot \overrightarrow{\mathbf{D}} \\
& M g[-(h+d)]+m g[+(h+d)]+1 / 2 k(-d)^{2}=+P D \\
& -M g(h+d)+m g(h+d)+1 / 2 k d^{2}=(1 / 2 m g)(h+d) \\
& {[1 / 2 k] d^{2}+(1 / 2 m-M) g d+(1 / 2 m-M) g h=0}
\end{aligned}
$$

Solve this quadratic equation for d !

1. A detailed sketch of the physical elements of the problem with all relevant positions clearly labeled for all states (e.g., initial and final). For example, in a gravitational problem involving two objects, the initial and final y should be shown for each particle with full subscripts uniquely identifying them: $\mathrm{y}_{1 \mathrm{i}}, \mathrm{y}_{1 \mathrm{f}}, \mathrm{y}_{2 \mathrm{i}}, \mathrm{y}_{2 \mathrm{f}}$, and the $\mathrm{y}=0$ level (Note: "should" \approx "must"). Some of these can be added as you solve the problem, but a diagram comes first even if it is initially incomplete.
2. A fundamental equation must appear, e.g., $\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}=\left(\mathrm{W}_{\text {other }}\right)_{\mathrm{i}+\mathrm{f}}$.
3. Write a expression for mechanical energy where kinetic energies of all particles in the system and each of the potential energies due to conservatives forces are identified. For example, if gravity and a spring act on a single particle, one writes $\mathrm{E}=\mathrm{K}+\mathrm{U}_{\mathrm{g}}+\mathrm{U}_{\mathrm{s}}$ or $\mathrm{E}=1 / 2 \mathrm{mv}^{2}+\mathrm{mgy}+1 / 2 \mathrm{ks}{ }^{2}$. Include the work done by OTHER forces in $\mathrm{W}_{\text {other }}$. If no other force acts except those already accounted for in potential energy, $\left(W_{\text {other }}\right)_{\text {i-f }}$ can be zeroed out. But check and verify your decisions!
4. If more than one potential acts (e.g., gravity and a spring), each potential should appear on both sides of the equation. Write out the explicit mathematical form for the potentials, with appropriate initial or final subscripts, e.g., $\mathrm{mgy}_{\mathrm{i}}$ for the initial gravitational potential energy. When you use such position-dependent formulae, you must clearly include the initial and final position symbols in your diagram (preferably with their value, e.g., $y_{i}=+H$ and $s_{f}=-d$), along with the location of the reference zero value, e.g., $\mathbf{y}=0$.

For example, consider the initial state of a particle at rest that is to be launched from a spring of compression d at a vertical distance h below the $\mathrm{y}=0$ level in a gravitational field, the following steps should appear: $\quad \mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\mathrm{f}} \quad$ because $\left(\mathrm{W}_{\text {other }}\right)_{i-f}=0$
$\mathrm{K}_{\mathrm{i}}+\left(\mathrm{U}_{\mathrm{g}}\right)_{\mathrm{i}}+\left(\mathrm{U}_{\mathrm{s}}\right)_{\mathrm{i}}=$ analogous final-state expression
$1 / 2 m X_{i}^{2}+\mathrm{mgy}_{\mathrm{i}}+1 / 2 \mathrm{ks}_{\mathrm{i}}^{2}=$ analogous final-state expression
$\mathrm{mg}(-\mathrm{h})+1 / 2 \mathrm{k}(-\mathrm{d})^{2}=$ analogous final-state expression
5. After they appear in your diagram, go ahead and substitute the algebraic values shown into your mathematics. Do not zero out a term unless your diagram supports it!

As an example, consider an Atwood machine with $M>m$ and a massless pulley. Block M starts from rest and falls onto a spring (spring constant k), from an initial height h above it. When M is released, block m is pulled upward by an additional external force whose magnitude P equals half the block's weight magnitude. What is the spring's maximum compression d ?

$$
\begin{aligned}
& E_{f}-E_{i}=\left(W_{\text {other }}\right)_{i-f} \quad \Rightarrow \quad E_{f}=E_{i}+\left(W_{P}\right)_{i-f} \\
& 1 / 2 M X_{f}^{2}+1 / 2 m X_{f}^{2}+\left[M g Y_{f}+m g y_{f}+1 / 2 k s_{f}^{2}\right] \\
& =1 / 2 M X_{i}^{2}+1 / 2 m X_{i}^{2}+\left[M g X_{i}+m g X_{i}+1 / 2 k X_{i}^{2}\right]+\overrightarrow{\mathbf{P}} \cdot \overrightarrow{\mathbf{D}} \\
& M g[-(h+d)]+m g[+(h+d)]+1 / 2 k(-d)^{2}=+P D \\
& -M g(h+d)+m g(h+d)+1 / 2 k d^{2}=(1 / 2 m g)(h+d) \\
& {[1 / 2 k] d^{2}+(1 / 2 m-M) g d+(1 / 2 m-M) g h=0}
\end{aligned}
$$

Solve this quadratic equation for d !

