Lecture 2: Motion in one dimension

- Motion in one dimension, continued
- Equations for constant acceleration
- Free fall
- Problem solving

Velocity and acceleration

$$v_{\chi} = \frac{dx}{dt}$$

$$a_{x} = \frac{dv_{x}}{dt} = \frac{d^{2}x}{dt^{2}}$$

Constant acceleration

Constant acceleration

$$a_x = \frac{dv_x}{dt}$$

$$dv_x = a_x dt$$

$$\int_{v_{0x}}^{v_x(t)} dv_x = \int_{t_0}^t a_x dt = a_x \int_{t_0}^t dt = a_x (t - t_0)$$

$$v_x - v_{0x} = a_x (t - t_0) = a_x t \text{ with } t_0 = 0$$

$$v_x = v_{0x} + a_x t$$

and similarly

$$x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$$

Another useful equation:
$$v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$$

Constant acceleration starting equations:

$$x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$$

$$v_x = v_{0x} + a_x t$$

$$v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$$

$$y = y_0 + v_{0y}t + \frac{1}{2}a_yt^2$$

$$v_{y} = v_{0y} + a_{y}t$$

$$v_y^2 = v_{0y}^2 + 2a_y(y - y_0)$$

You will find these equations on the starting equation sheet. They are your starting point for homework and test problems.

Free fall

Object in free fall experiences a constant downward acceleration of magnitude

In absence of air resistance, objects fall with the same acceleration irrespective of mass.

Video: Apollo 15 Feather and Hammer

Example

A person stands on top of a building of height 80m. They throw a ball straight up with an initial speed 20 m/s so that is just misses the edge of the building in coming down.

(Use $g=10 \text{ m/s}^2$.)*

*Only for this example so that we do not have to use a calculator. On your homework problems, you need to use the more accurate value of 9.8 m/s².

Calculate:

- a) the time it takes for the ball to reach its highest point
 - b) the height of the highest point above the ground.
- c) the velocity with which the ball hits the ground

To be worked out on the board...

Summary of Litany for kinematics problems

- 1. Complete diagram.
- Draw initial velocity and acceleration
- Draw axis, including origin
- Indicate and label initial and final positions
- 2. Starting equation
- 3. Replace generic quantities with information given in the problem
- 4. Derive symbolic answer
- 5. Calculate numerical answer (carry units!)