Lecture 4: Motion in two dimensions

- Position, velocity, and acceleration in 2-d
- Separation of motion in x-and y-direction
- Equations for 2-d kinematics at constant acceleration
- Projectile motion

Velocity

Position vector $\vec{r} = r_x \hat{\imath} + r_y \hat{\jmath} = x \hat{\imath} + y \hat{\jmath}$ $\Delta \vec{r}$ Average velocity $\vec{v}_{av} =$ Δt $d\vec{r}$ Instantaneous velocity: $\vec{v} =$ dt dx $\frac{dy}{x}$ $\vec{v} = v_x \hat{\imath} + v_y \hat{\jmath} =$ \hat{i} + \hat{J} dt dt $d\vec{r}$ = $\vec{v}dt$ r_{i}

$$
\nu_x = \frac{dx}{dt} \quad , \quad \nu_y = \frac{dy}{dt}
$$

Small change of position vector in the direction of velocity vector

 $\vec{r}_f = \vec{r}_i + \vec{v} dt$

Acceleration

Particle has velocity vector $\vec{v} = v_x \hat{\imath} + v_y \hat{\jmath} =$ dx dt \hat{i} + $\frac{dy}{y}$ dt \hat{J}

Acceleration:
$$
\vec{a} = \frac{d\vec{v}}{dt}
$$

\n
$$
\vec{a} = a_x \hat{i} + a_y \hat{j} = \frac{d\vec{v}_x}{dt} \hat{i} + \frac{d\vec{v}_y}{dt} \hat{j}
$$

\n
$$
a_x = \frac{d\vec{v}_x}{dt} = \frac{d^2x}{dt^2}, \quad a_y = \frac{d\vec{v}_y}{dt} = \frac{d^2y}{dt^2}
$$

 $\vec{d} \vec{v}$ = $\vec{\alpha}$ $\vec{d}t$ Small change in velocity vector $\mathcal{N}_{\bm i}$ occurs in the direction of the acceleration vector $\vec{v}_f = \vec{v}_i + \vec{a} dt$ Acceleration changes velocity, i.e. speed and direction of motion.

Effect of acceleration components

Components of acceleration parallel and perpendicular to velocity have different effects.

 $d\vec{v} = \vec{a} dt$

 $a_{\rm II}$ causes change in magnitude of velocity vector (speed) a_{\perp} causes change in direction

adt $\mathcal{N}_{\mathcal{L}}$

Demonstrations

- Vertical launch of ball from traveling car
- Simultaneously dropped and horizontally launched balls

Kinematics equations

For constant acceleration:

$$
x = x_0 + v_{0x}t + \frac{1}{2}a_x t^2
$$

$$
y = y_0 + v_{0y}t + \frac{1}{2}a_y t^2
$$

$$
v_x = v_{0x} + a_x t
$$

$$
v_y = v_{0y} + a_y t
$$

$$
v_x^2 = v_{0x}^2 + 2a_x(x - x_0)
$$

$$
v_y^2 = v_{0y}^2 + 2a_y(y - y_0)
$$

Official
Starting
Equations

Projectile Motion

If only gravity acts on an object (free fall), then acceleration is a constant vector of magnitude g, directed down.

Effect on velocity: $v_x = v_{0x} + a_x t = v_{0x}$ $v_y = v_{0y} + a_y t = v_{0y} - gt$ NOT Starting
equations

Projectile motion: Simulation

<http://www.walter-fendt.de/ph14e/projectile.htm>

Free-fall trajectory

Worked out on the board…

Example

A person is stranded between a river and a high vertical cliff. To get help, they want to throw a bottle containing a message over the river. If they throw the bottle with an initial velocity V_0 and at a positive angle θ with respect to the horizontal, what is the minimum height *H* they need to climb up the cliff to ensure that the bottle just barely reaches the opposite river bank, a distance *D* away?

 \mathcal{L}_{max} and \mathcal{L}_{max} and \mathcal{L}_{max}

Demo: The hunter and the monkey

*You will work this out in the Special Homework.

Hint: the angle θ between initial velocity and horizontal is not given, but knowing D and H will enable you to find sin θ and cos θ.