Lecture 6: Newton's Third Law

- Newton's 3rd Law
- Action-reaction pairs
- Inclined coordinate system
- Massless ropes and massless, frictionless pulleys
- Coupled objects

Newton's 3rd Law

Common version:

For every action there is an equal and opposite reaction. *

*This is problematic because it suggests that first there is an action and then there is a reaction.

Better version:

If an object A exerts a force \vec{F}_{AB} on object B, then object B exerts a force \vec{F}_{BA} on object A, with

$$\vec{F}_{BA} = -\vec{F}_{AB}$$

equal in magnitude, opposite in direction.

Action-reaction pairs

Example: Cat at Rest on a Table

$$\overrightarrow{N} = -\overrightarrow{W}$$
 because $\overrightarrow{a} = 0$ (Newton's 2nd law)

But \overrightarrow{N} and \overrightarrow{W} are not an action-reaction pair!

Action-reaction pairs are:

$$\{\overrightarrow{W} \text{ and } \overrightarrow{F}_{grav Earth by M}\}$$
 and $\{\overrightarrow{N} \text{ and } \overrightarrow{F}_{table by M}\}$

Forces of action-reaction pair act on two different objects

Object on inclined plane

Normal = perpendicular Normal force must be perpendicular to surface

Weight: vertically down

Object on inclined plane

Choose axis in direction of acceleration.

Draw components of weight vector

Identify θ in the weight triangle

Components of weight vector

In this coordinate system:

$$W_x = +W \cos \theta = +Mg \cos \theta$$

$$W_y = -W \sin \theta = -Mg \sin \theta$$

CAUTION: Do not memorize!

If α were angle with horizontal and if x-axis had opposite direction:

$$W_{x} = -W \sin \alpha = -Mg \sin \alpha$$

$$W_{y} = -W \cos \alpha = -Mg \cos \alpha$$

Example: object on incline

A crate of mass M is pushed up a frictionless inclined ramp that makes an angle θ with the horizontal by means of a horizontal pushing force of constant magnitude P. Find the acceleration of the crate.

Coupled objects: ropes and pulleys

We make the following approximations:

- massless, un-stretchable rope
- → tension is constant throughout the rope
- massless, frictionless pulley
- → tension remains constant as rope passes over pulley

Caution:

If mass and spatial extension of the pulley are taken into account, the tension does not remain constant! We will study this with Rotational Motion in lectures 18-21.

Example with coupled objects

Two blocks are connected by a massless string. A block of mass m is on a frictionless inclined plane that makes angle θ with the **vertical**, while a block of mass M hangs over a massless and frictionless pulley. Derive an expression for the acceleration of the blocks in terms of relevant system parameters.

