## Lecture 12: Potential energy diagrams

- Problem with Work done by "other" forces
- Relationship between force and potential energy
- Potential energy diagrams

#### Example with other force



A block of mass M is at rest on an incline that makes an angle  $\theta$  with the horizontal. It slides down a distance L and then flies of the edge a height H above the ground. Throughout its motion, a constant vertical blowing force of magnitude B is acting on the block.

Derive an expression for the speed with which the block hits the ground.

# Relationship between force and potential energy

$$U(\vec{r}_B) - U(\vec{r}_A) = -W_{A \to B} = -\int_{\vec{r}_A}^{r_B} \vec{F} \cdot d\vec{r}$$

In one dimension:  $\vec{F} = F_x(x)\hat{i}$ 

 $\Delta U = -\int F_x dx$ 

$$F_x = -\frac{dU(x)}{dx}$$

$$U_{grav} = mgy$$
 (y-axis up)  $F_{grav,y} = -\frac{d}{dy}(mgy) = -mg$ 

In three dimensions: U = U(x, y, z)

$$F_x = -\frac{\partial U(x, y, z)}{\partial x}$$
  $F_y = -\frac{\partial U(x, y, z)}{\partial y}$   $F_z = -\frac{\partial U(x, y, z)}{\partial z}$ 

Partial derivative  $\frac{\partial}{\partial x}$  means: treat y and z like constants and only x like a variable

Example: 
$$U(x, y, z) = xy^2 z$$
  
 $\frac{\partial u}{\partial x} = y^2 z$ ,  $\frac{\partial u}{\partial y} = 2xyz$ ,  $\frac{\partial u}{\partial z} = xy^2$ 

#### Motion in a potential energy well

Consider motion in one dimension under the influence of a single conservative force with potential energy U(x).

 $W_{other} = 0$ ,  $E_f = E_i$ 



#### Kinetic and potential energy



$$E = K(x) + U(x)$$
$$\implies K(x) = E - U(x)$$

Small  $U \Longrightarrow$  large KLarge  $U \Longrightarrow$  small K

*K* is maximum where *U* is minimum

At turning points: U = E, K = 0

#### Force and potential energy



#### Different total mechanical energy



Motion possible between  $x_1$  and  $x_2$  or between  $x_3$  and  $x_4$ Not possible between  $x_2$  and  $x_3$  because U(x) > E(*K* can not be negative)

### Equilibrium



Equilibrium: 
$$F_x = 0$$
  
$$F_x = -\frac{dU(x)}{dx} = 0$$

U(x) has local minimum or maximum

Minimum = stable



Maximum = unstable



#### **Example: Diatomic Molecule**

Diatomic molecule: two atoms separated a distance r What should we expect about force between atoms?

Too close: repulsive force

The shorter the distance, the greater the force

Too far: attractive force

Force decreases with distance, goes to zero for  $r \rightarrow \infty$ 

Distance just right: equilibrium

#### **Example: Diatomic Molecule**

Diatomic molecule: two atoms separated a distance r

