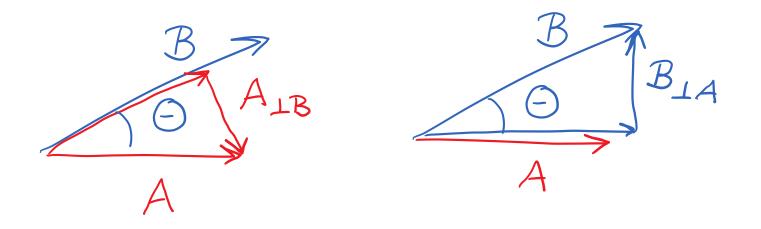
Lecture 21: Torque

- Cross product
- Torque
- Relationship between torque and angular acceleration
- Problem solving

What causes rotation?

Demo: bolt and wrench

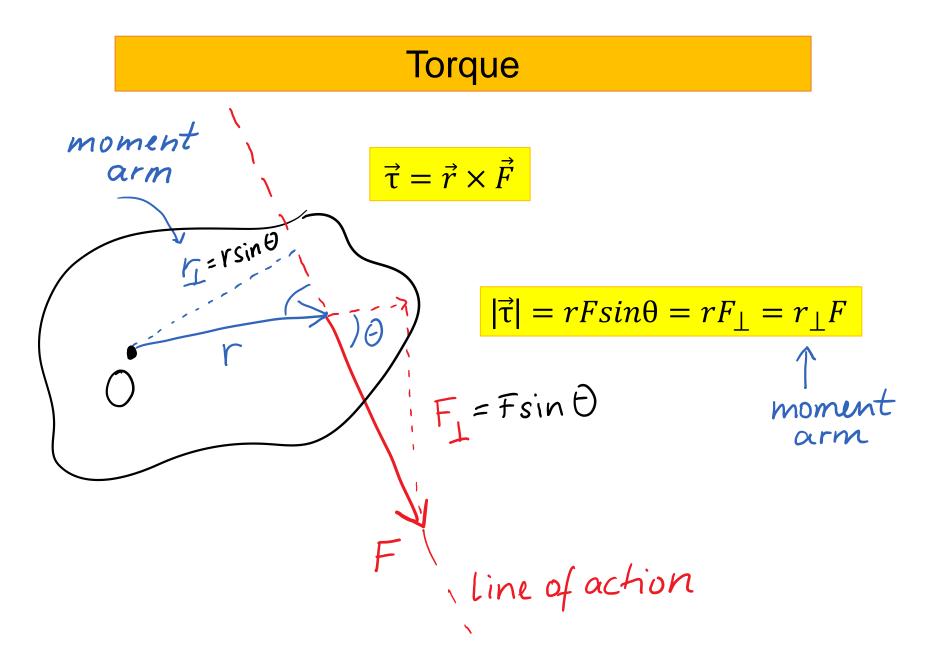

Need:

- Force
- Distance
- Perpendicular component

Vector cross product: magnitude

$$\vec{A} \times \vec{B} = \vec{C}$$

$$C = AB \sin\theta = A_{\perp B}B = AB_{\perp A}$$


Vector cross product: Direction

$$\vec{A} \times \vec{B} = \vec{C}$$

licular
d \vec{B}

 \vec{C} is perpendicular to both \vec{A} and \vec{B}

Direction: right hand rule

thumb x index finger = middle finger

Direction of torque

F = C thumb index middle finger finger

Right hand rule:

or easier:

If force tends to produce rotation in the positive *z*-direction, τ_z is *positive*:

 $\tau_z = + r F \sin(\theta)$

If force tends to produce rotation in the negative *z*-direction, τ_z is *negative*:

 $\tau_z = -rF\sin(\theta)$

Indicate positive *z*-direction through curved arrow.

line of action

$$r_1$$

 r_2
 r_2
 r_2
 r_1
 r_2
 r_1
 r_2
 r_2
 r_1
 r_2
 r_1
 r_2
 r_1
 r_2
 r_1
 r_2
 r_1
 r_2
 r_2
 r_1
 r_2
 r_2
 r_1
 r_2
 r_2
 r_2
 r_1
 r_2
 r_3
 r_4
 r_5
 r_5
 r_5
 r_5
 r_5
 r_5
 r_5
 r_5
 r_1
 r_2
 r_2
 r_3
 r_4
 r_4

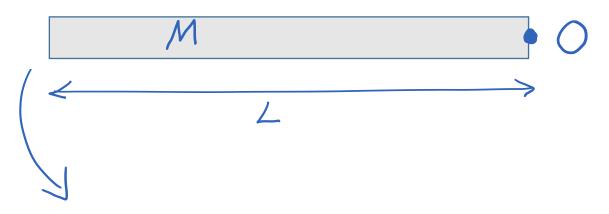
$$\tau_{1z} = +F_1 r_{1\perp} = +F_{1\perp} r_1$$

$$\tau_{2z} = -F_2 r_{2\perp} = -F_{2\perp} r_2$$

Angular acceleration of rigid object

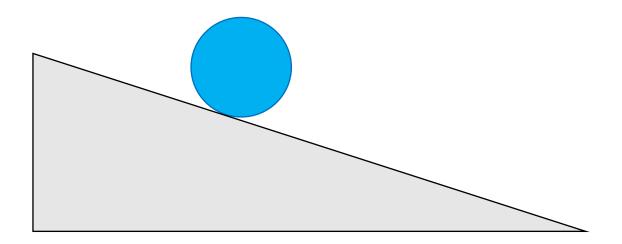
Rigid object that can rotate about *z*-axis. I_z moment of inertia about *z*-axis

$$\sum \tau_z = I_z \alpha_z$$

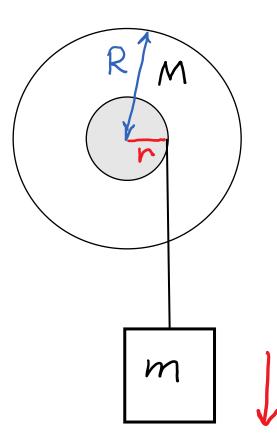

Compare to $\Sigma F_x = ma_x$

Begin with extended free-body diagram that shows forces and where they act on the object

Example 1:


A uniform bar of length *L* and mass *M* can freely rotate about frictionless horizontal axis *O* at its end. The bar is initially in a horizontal position, is released from rest, and swings down under the influence of gravity. What is the initial angular acceleration of the bar just after it is released from rest?

$$I_{bar} = \frac{1}{3} M L^2$$
 about O



Example 2: Rolling w/o slipping

An object of mass M, radius R and moment of inertia I is rolling without slipping down incline that makes an angle θ with the horizontal. Derive an expression for the object's linear acceleration.

Example 3: Coupled objects

A small disk of radius r is glued onto a large disk of radius R that is mounted on a fixed axle through its center. The combined moment of inertia of the disks is *I*. A string is wrapped around the edge of the small disk, and a box of mass m is tied to the end of the string. The string does not slip on the disk.

Find the acceleration of the box after it is released from rest.