Lecture 23: Angular momentum

- Angular momentum of a point mass
- Angular momentum of a rigid rotating object
- Conservation of angular momentum

Translation vs rotation

Linear momentum \vec{p} is fundamental quantity for translation. Forces change linear momentum.

Angular momentum \dot{l} is fundamer
Torques change angular momentu \vec{l} is fundamental quantity for rotation. Torques change angular momentum.

$$
\vec{l} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}
$$

Angular momentum of a particle

\n
$$
\vec{l} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}
$$
\n
$$
l = r_{\perp}mv = rmv_{\perp} = rmv \sin\theta
$$
\n
$$
m \approx \sqrt{\frac{g}{m}} \sqrt{\frac{v_{\perp}}{r}}
$$
\nUsing the equation $\vec{r} = \frac{m}{k}$ is a point of the point \vec{r} .

Direction: right hand rule

 $F \times \overrightarrow{p} = \overrightarrow{l}$
thumb index middle
finger finger

perpendicular
to plane of

L is in the same direction as angular velocity $\vec{\omega}$ vector for rotations **about a symmetry axis only**. This is not the case for rotation about other axes.

Angular momentum conservation

$$
\sum \tau_z = \frac{dL_z}{dt} = \frac{d(I\omega_z)}{dt} = I\alpha_z
$$

For system:
$$
\sum \vec{\tau} = \sum \vec{\tau}_{ext} = \frac{d\vec{L}}{dt}
$$

If
$$
\sum \vec{\tau}_{ext} = 0 \Longrightarrow \frac{d\vec{L}}{dt} = 0, \vec{L}_i = \vec{L}_f
$$

Compare:
$$
\sum F_x = \frac{dP_x}{dt}
$$
 If $\sum F_{ext,x} = 0$, $P_{ix} = P_{fx}$

Demonstrations

 $\sum \frac{1}{\chi_{k+1}}^{\infty} = \frac{d\overline{\chi}}{dt}$

 $\angle_{i\epsilon} = \angle_{fz}$ $\overline{I}_{i} \omega_{i} = \overline{I}_{f} \omega_{f}$

 $\angle_{2} = I \omega_{2}$
 $I = \sum_{n} m_{n} r_{n}^{2}$

Demonstrations

Bicycle wheel gynoscope

 \overline{c} = $\frac{d\overline{L}}{dt}$ $d\vec{l} = \vec{\tau} dt$

Example 1

A ball of mass m and speed V strikes a door at angle *θ* and bounces off at a right angle with **¼** its original speed. What is the final angular speed of the door after the collision?

Example 2

A ball from example 1 is made of putty and sticks to the door after the collision. What is the final angular speed of the door with the ball stuck on?

Example 3

A merry-go-round (solid disk of mass *M* and radius *R*) is rotating on frictionless bearings about a vertical axis through its center. It rotates in the clockwise direction with angular speed ω. A child of mass ½*M* is initially sitting at the outer edge of the merry-go-round. When the child jumps off tangentially to the circumference, the merry-go-round reverses its rotation and now rotates with the same angular speed ω in the opposite, i.e. counterclockwise, direction. Derive an expression for the speed relative to the ground with which the child jumps off.

Kepler's 2 nd Law

Planet A line drawn between the $d\theta$ sun and a planet sweeps out equal areas in equal Sur intervals of time
Torque by gravity: $\overrightarrow{c} = \overrightarrow{r} \times \overrightarrow{F}_{grav} = 0$ => $\overrightarrow{\ell} = constant$ \vec{l} = \vec{r} x \vec{p} = \vec{r} x $m\vec{v}$ $l = rmv = rm \omega r = r^2m \omega$ rdO dθ Area: $dA = \frac{1}{2}r(r d\theta) = \frac{1}{2}r^2 d\theta$ $\frac{dA}{dt} = \frac{1}{2}r^2 \frac{d\theta}{dt} = \frac{1}{2}r^2\omega = \frac{l}{2m} = constant$ (1)