Lecture 24: Periodic Motion

- Motion of a mass at the end of a spring
- Differential equation for simple harmonic oscillation
- Amplitude, period, frequency and angular frequency
- Energetics
- Simple pendulum
- Physical pendulum

Mass at the end of a spring

Mass m connected to a spring with spring constant k on a frictionless surface

$$
F_x = -kx
$$

 $\boldsymbol{\times}$

Linear restoring spring force

Spring force

stretch or compression k force constant

 F_x is negative if x is positive (stretched spring)

 F_x is positive if x is negative (compressed spring)

Differential equation of a SHO

Newton's 2nd Law: $\sum F_x = ma_x$

$$
-kx = m \frac{d^2x}{dt^2}
$$

$$
-\frac{k}{m}x = \frac{d^2x}{dt^2}
$$

$$
\frac{d^2x}{dt^2} = -\omega^2x
$$

$$
\omega = \sqrt{\frac{k}{m}}
$$

Angular frequency

Differential equation of a Simple Harmonic Oscillator *We can always write it like this because m and k are positive

Solution

$$
\frac{d^2x}{dt^2} = -\omega^2 x
$$

$$
= -\omega^2 x
$$
 Equation for SHO

A and φ : two "constants of integration" from solution of a *second-order* differential equation. Determined by the initial conditions.

Amplitude

$$
x = A\cos(\omega t + \varphi)
$$

Range of cosine function: -1...+1
\n
$$
\Rightarrow -A \le x(t) \le +A
$$

A = Amplitude of the oscillation

Phase Constant

$$
x = A\cos(\omega t + \varphi)
$$

To describe motion with different starting points: Add phase constant to shift the cosine function

$$
x = A\cos(\omega t + \varphi)
$$

 $X_0 = 0:$
Shift by $\frac{\pi}{2}$

Initial conditions

$$
x_0 = x(t = 0)
$$

$$
v_{x0} = v_x(t = 0)
$$

$$
x_0 = A \cos(0 + \varphi) = A \cos(\varphi)
$$

$$
v_{x0} = -A\omega \sin(0 + \varphi) = -A\omega \sin(\varphi)
$$

 \rightarrow two equations for A and φ

Position and velocity

$$
x = A\cos(\omega t + \varphi)
$$

$$
v_x = \frac{dx}{dt} = -A\omega\sin(\omega t + \varphi)
$$

At time
$$
t_m
$$
: $x = x_{max} = A$ $cos(\omega t_m + \varphi) = 1$
\n $(\omega t_m + \varphi) = 0 \text{ or } \pi$
\n $sin(\omega t_m + \varphi) = 0$ $\implies v_x(t_m) = 0$

Mass stops and reverses direction when it reaches maximum displacement (turning point)

Simulation

http:/[/www.walter-fendt.de/ph14e/springpendulum.htm](http://www.walter-fendt.de/ph14e/springpendulum.htm)

Period and angular frequency

Time T for one complete cycle: period

 $(\omega t + \varphi)$ changes by 2π in time T

$$
\omega T = 2\pi \quad \Rightarrow \quad \omega = \frac{2\pi}{T} = 2\pi f
$$

Effect of mass and amplitude on period

$$
\omega T = 2\pi \implies T = \frac{2\pi}{\omega}
$$

$$
\omega = \sqrt{\frac{k}{m}} \implies T = \frac{2\pi}{\sqrt{\frac{k}{m}}} \qquad T = 2\pi \sqrt{\frac{m}{k}}
$$

Amplitude A does not appear – no effect on period

Demo: Vertical springs showing effect of m and A

Energy in SHO

Kinetic and potential energy in SHO

$$
K = \frac{1}{2}mv^2 = \frac{1}{2}m[A\omega\sin(\omega t + \varphi)]^2
$$

$$
K_{max} = \frac{1}{2} m v_{max}^2 = \frac{1}{2} m (\omega A)^2
$$

$$
U = \frac{1}{2}kx^2 = \frac{1}{2}k[A\cos(\omega t + \varphi)]^2
$$

$$
U_{max} = \frac{1}{2}kx_{max}^2 = \frac{1}{2}k A^2
$$

$$
E = K_{max} \sin^2(\omega t + \varphi) + U_{max} \cos^2(\omega t + \varphi)
$$

http://www.walter-fendt.de/ph14e/springpendulum.htm

Example

A block of mass *M* is attached to a spring and executes simple harmonic motion of amplitude *A*. At what displacement(s) *x* from equilibrium does its kinetic energy equal twice its potential energy?

SHO

$$
\frac{d^2x}{dt^2} = -\omega^2 x
$$

Equation for SHO

General solution:

$$
x = A\cos(\omega t + \varphi)
$$

$$
T=\frac{2\pi}{\omega}
$$

Simple Pendulum

Point mass m at the end of a massless string of length L

 θ = displacement coordinate (**with sign**) from vertical equilibrium position

Simple Pendulum

$$
\Sigma \tau_z = I \alpha_z
$$

-
$$
-mg L \sin\theta = mL^2 \frac{d^2\theta}{dt^2}
$$

Very complicated differential equation! But for small oscillations:

 $sin\theta \approx \theta$

And

$$
-\frac{g}{L}\theta = \frac{d^2\theta}{dt^2}
$$

Differential equation of SHO

Simple pendulum oscillations

$$
-\frac{g}{L}\theta = \frac{d^2\theta}{dt^2}
$$

Differential equation of simple harmonic oscillator

$$
\theta(t) = \theta_{max} \cos(\omega t + \varphi)
$$

With
$$
\omega = \sqrt{\frac{g}{L}}
$$
 and $T = 2\pi \sqrt{\frac{L}{g}}$

Demo: Simple pendulum with different masses, lengths and amplitudes

 $T = 2π$ \overline{L} \overline{g}

Demo: Simple pendulum with different masses, lengths and amplitudes

- Period independent of mass
- Period independent of amplitude

Physical Pendulum

Extended object of mass m that swings back and forth about an axis *P* that does not go through its center of mass **CM**.

$$
\Sigma \tau_z = I \alpha_z
$$

-
$$
-mg D \sin \theta = I \frac{d^2 \theta}{dt^2}
$$

For small oscillations: $sin\theta \approx \theta$

$$
-\frac{mgD}{I}\theta = \frac{d^2\theta}{dt^2}
$$

Motion of the Physical Pendulum

$$
T = 2\pi \sqrt{\frac{I}{mgD}}
$$

I is moment of inertia about axis P D is distance between P and CM Parallel axis theorem:

$$
I_P = I_{CM} + mD^2
$$

Demo: Meter stick pivoted at different positions

Example

A uniform disk of mass M and radius R is pivoted at a point at the rim. Find the period for small oscillations.

$$
T = 2\pi \sqrt{\frac{I}{mgD}}
$$

$$
I_P = I_{CM} + mD^2
$$

R