Lecture 28: Heat energy and transport

- 0th law of Thermodynamics
- Heat and temperature change
- Heat transfer

Zero-th Law of Thermodynamics

Two objects in thermal contact, no interaction with the environment \rightarrow will reach the same temperature after sufficient time.

= Thermal equilibrium.

If two objects are in thermal equilibrium with a third object, they are in thermal equilibrium with each other.

Basis for any temperature measurement

Energy transfer

If two objects are in contact: Energy transfer.

Heat energy transferred because of difference in temperature. Heat is always flowing from hot object to cold object

If heat is put into an object, its temperature rises.

$$\Delta T = \frac{Q}{mc_{substance}}$$

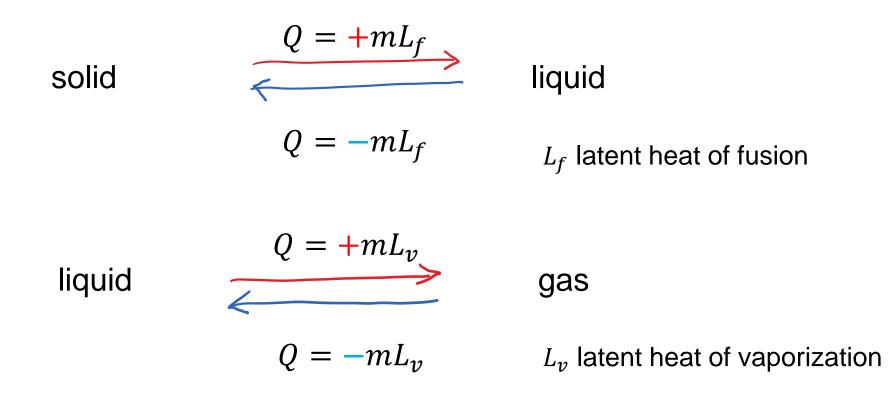
 $c_{substance}$ is called specific heat, heat capacity

Heat

 $Q = mc\Delta T$

Q is the amount of heat energy that needs to be transferred into mass m of the substance to change its temperature by ΔT .

If *Q* is positive:


- ΔT is positive (temperature increases)
- Heat energy flows into system

If Q is negative:

- ΔT is negative (temperature decreases)
- Heat flows out of the system

Heat in phase changes

Phase changes (phase transitions) require (+) or release (–) extra amount of heat.

Example 1

300 g of tea at 70° C are poured into a 120g cup made of aluminum that is at a temperature of 20° C. What is the final temperature?

Example 2

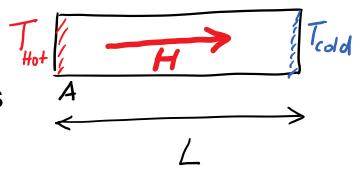
You have 0.25 kg of water at 25 °C and are adding ice to it that has a temperature of – 20°C. How much ice is needed to that the final temperature of the mixture is 0°C and all ice is melted? Neglect the container.

Three mechanisms of heat transfer

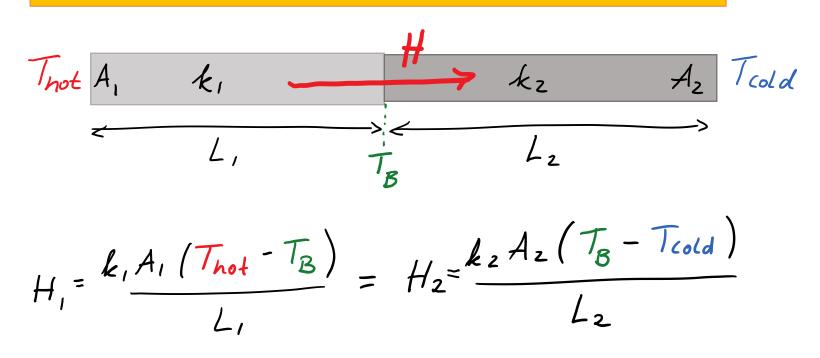
Conduction

Convection

Radiation

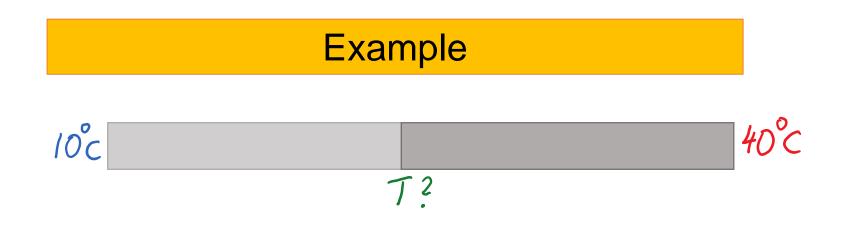

Heat conduction

length L cross sectional area A temperatures T_{hot} and T_{cold} at ends


Rate of heat energy flow through area *A* in steady state:

$$H = \frac{dQ}{dt} = kA\frac{T_{hot} - T_{cold}}{L}$$

k thermal conductivity, material property



Material boundaries

Layers of different materials with different thermal conductivities k_n and thickness L_n :

$$H = A \frac{T_{hot} - T_{cold}}{R_{tot}} \qquad \qquad R_{tot} = \sum R_n \qquad \qquad R_n = \frac{L_n}{k_n}$$

A rod of uniform cross section has its left end placed in water of a temperature 10°C and its right end at 40°C. The left half of the rod consists of material A with a thermal conductivity of 400 W/m°C, the right half of material B with thermal conductivity of 200 W/m°C. The temperature in the middle of the rod is: A) 20°C B) 25°C C) 30.5° C D) 18°C