Lecture 29: 1st Law of Thermodynamics

- thermodynamic work
- 1st law of Thermodynamics
- equation of state of the ideal gas
- Isochoric, isobaric, and isothermal process in ideal gas

Thermodynamic work

$$W = \int_{i}^{f} p(V,T) dV$$

work done by the gas

Work and p-V curve

$$W = \int_{i}^{f} p(V,T) dV$$

work done by the gas \Rightarrow area under the p - V-curve

W > 0 if gas **expands** ($\Delta V > 0$) W < 0 if gas is **compressed** ($\Delta V < 0$)

First Law of Thermodynamics

The internal energy of a system can change:

- Heat flow in or out of system
- Work done on or by gas

$$\Delta U = Q - W$$

Q: net heat flowing into the system W: work done by the system

 ΔU is completely determined by initial and final values of the state variables (even though *W* and *Q* depend on the process!)

Internal energy

Internal energy *U* of the system = kinetic energies of particles + potential energy of interaction

Value of *U* depends on state of system only.

State is characterized by state variables such as: temperature, pressure, volume, phase

Ideal gas

- particles do not interact with each other
- only elastic collisions between particles and with walls

Real gas can be treated as ideal if: low density, low pressure, high temperature

State variables are related by:

pV = nRT

n number of moles *R* universal gas constant *R*=8.315J/(mol· K)

No interactions between particles $\Rightarrow U$ consists only of kinetic energies of particles $\Rightarrow U$ depends only on temperature: $U = U(T)^{*}$ * Only t

* Only true for ideal gas!

Important processes for the ideal gas

Adiabatic Process

Isochoric process for the ideal gas

Isobaric process for the ideal gas

Isothermal process for the ideal gas

$$P = \prod_{i=1}^{n} \frac{T = const}{V} \quad W = \int p dV$$

$$P = nRT$$

$$P(V,T) = \frac{nRT}{V}$$

$$W = \int \frac{nRT}{V} dV = nRT \int_{i}^{t} \frac{dV}{V}$$

$$T = const$$

$$W = nRT \ln \frac{V_{f}}{V_{i}}$$

$$U = U(T) = if T = const, \quad U = const = i \quad \Delta U = 0$$

$$\Delta U = Q - W = 0$$

$$Q = W = nRT \ln \frac{V_{f}}{V_{i}}$$

Isobaric vs isochoric process

Consider two process between same two temperatures:

To increase U by same amount as in isochoric process, more Q needed for isobaric process because gas is doing work

Difference between c_V and c_p

$$c_p - c_V = R$$

Monoatomic gas:
$$c_V = \frac{3}{2}R, \ c_p = \frac{5}{2}R$$

Diatomic gas: $c_V = \frac{5}{2}R, \ c_p = \frac{7}{2}R$

Mono- vs diatomic gas

Monoatomic gas:
$$c_V = \frac{3}{2}R$$
, $c_p = \frac{5}{2}R$

Diatomic gas:
$$c_V = \frac{5}{2}R, \ c_p = \frac{7}{2}R$$

Each degree of freedom in the kinetic energy contributes $\frac{1}{2}R$ to specific heat

Monoatomic gas: 3 directions for translation

Diatomic gas: 3 translations, 3 rotations, but very small moment of inertia about one axis, this rotation does not contribute

Adiabatic Process

