Lecture 29: 1st Law of Thermodynamics

- thermodynamic work
- 1st law of Thermodynamics
- equation of state of the ideal gas
- Isochoric, isobaric, and isothermal process in ideal gas

Thermodynamic work

$$
W = \int_{i}^{f} p(V, T) dV
$$

work done **by** the gas

Work and p-V curve

$$
W = \int_{i}^{f} p(V, T) dV
$$

work done **by** the gas \Rightarrow area under the $p - V$ -curve

 $W > 0$ if gas **expands** ($\Delta V > 0$) $W < 0$ if gas is **compressed** ($\Delta V < 0$)

First Law of Thermodynamics

The internal energy of a system can change:

- Heat flow in or out of system
- Work done on or by gas

$$
\Delta U = Q - W
$$

Q : net heat flowing into the system W : work done by the system

 ΔU is completely determined by initial and final values of the state variables (even though W and Q depend on the process!)

Internal energy

Internal energy U of the system = kinetic energies of particles + potential energy of interaction

Value of U depends on state of system only.

State is characterized by state variables such as: temperature, pressure, volume, phase

Ideal gas

- particles do not interact with each other
- only elastic collisions between particles and with walls

Real gas can be treated as ideal if: low density, low pressure, high temperature

State variables are related by:

 $pV = nRT$

 n number of moles universal gas constant =8.315J/(mol∙ K)

No interactions between particles $\Rightarrow U$ consists only of kinetic energies of particles \Rightarrow U depends only on temperature: $U = U(T)$ * * Only true

for ideal gas!

Important processes for the ideal gas

Adiabatic Process

Isochoric process for the ideal gas

P
\n
$$
W = \int p \, dV = 0
$$
\n
$$
Q = n \, c_v \, \Delta T
$$
\n
$$
I_{specific heat at at constant volume}
$$
\n
$$
V = const
$$
\n
$$
V = const
$$
\n
$$
V = 2R
$$
\n
$$
diamic
$$
\n
$$
C_v = \frac{3}{2}R
$$
\n
$$
diamic
$$
\n
$$
C_v = \frac{5}{2}R
$$
\n
$$
A U = Q - W = nC_v \, \Delta T
$$

Isobaric process for the ideal gas

Isothermal process for the ideal gas

P
\n
$$
W = SpdV
$$
\n
$$
P^{\text{V=nRT}} = \frac{pV}{V} = \frac{npV}{V}
$$
\n
$$
W = \int_{V} \frac{npV}{V}dV = nRT \int_{V} \frac{dV}{V}dV
$$
\n
$$
V = nRT \ln \frac{V_{f}}{V_{i}}
$$
\n
$$
W = nRT \ln \frac{V_{f}}{V_{i}}
$$
\n
$$
U = U(T) \implies \text{if } T = const, U = const \implies \Delta U = 0
$$
\n
$$
\Delta U = Q - W = 0
$$
\n
$$
Q = W = nRT \ln \frac{V_{f}}{V_{i}}
$$

Isobaric vs isochoric process

Consider two process between same two temperatures:

To increase U by same amount as in isochoric process, more Q needed for isobaric process because gas is doing work

Difference between c_y and c_p

$$
c_p - c_V = R
$$

Monoatomic gas:
$$
c_V = \frac{3}{2}R
$$
, $c_p = \frac{5}{2}R$
Diatomic gas: $c_V = \frac{5}{2}R$, $c_p = \frac{7}{2}R$

Mono- vs diatomic gas

Monoatomic gas:
$$
c_V = \frac{3}{2}R
$$
, $c_p = \frac{5}{2}R$

Diatomic gas:
$$
c_V = \frac{5}{2}R
$$
, $c_p = \frac{7}{2}R$

Each degree of freedom in the kinetic energy contributes $\frac{1}{2}$ 2 R to specific heat

Monoatomic gas: 3 directions for translation

Diatomic gas: 3 translations, 3 rotations, but very small moment of inertia about one axis, this rotation does not contribute

Adiabatic Process

