Lecture 30: 2nd Law of Thermodynamics

- Thermodynamic cycles
- 2nd law of Thermodynamics
- Carnot Cycle

Thermodynamic Cycles

System returns to initial state

$$U_f = U_i$$

 $\Delta U = Q - W = 0$

$$Q = W$$

Work in cycles

W= area enclosed in the cycle Clockwise: more positive W than negative W $W_{net} > 0$ Counter-clockwise: more negative W than positive W $W_{net} < 0$

Heat engine

Qnet = QH + QC $= Q_{\mu} - |Q_c|$

Efficiency

2nd Law of Thermodynamics

Clausius:

Heat flows naturally from a hot object to a cold object; heat will not flow spontaneously from a cold object to a hot object.

Kelvin-Planck:

No device is possible whose sole effect is to transform a given amount of heat completely into work.

impossible to construct perpetual motion machine of 2nd kind

Carnot Cycle

1-2 isothermal expansion2-3 adiabatic expansion3-4 isothermal compression4-1 adiabatic compression

Carnot Cycle

1-2 isothermal expansion

$$\Delta U = O$$

 $Q = W = \int p dV = \int \frac{nRT}{V} dV$
 $Q = nRT_{H} \ln \frac{V_{2}}{V_{1}} > D$ in

2-3 adiabatic expansion Q = O $\Delta U = -W \quad W = -nc_v (T_c - T_H)$

3-4 isothermal compression $\Delta U = 0$ $Q = W = nRT_c (n \frac{V_4}{V_3} < 0 \text{ out}$ 4-1 adiabatic compression Q = 0 $\Delta U = -W$ $W = -nC_v (T_H - T_c)$

Efficiency of Carnot Cycle

Carnot Cycle has maximum efficiency

Heat transfer during isothermal process reversible No heat transfer during process that involves temperature change

→ Carnot cycle is reversible

If more efficient engine existed:

Couple hypothetical engine with reverse Carnot engine Transforms amount of heat completely into work Violates 2nd Law

----> More efficient engine can not exist

$$e_{Carnot} = 1 - \frac{T_C}{T_H}$$

Maximum efficiency of any cycle operating between $T_{\rm C}$ and $T_{\rm H}$