Lecture 9: Capacitors

- Capacitors are used to store charge
- Charge is directly proportional to potential difference

$$
Q=C \Delta V_{C}
$$

- Constant of proportionality: Capacitance

$$
C=\frac{Q}{\Delta V_{C}}
$$

Unit: $1 \mathrm{~F}=1 \mathrm{Q} / 1 \mathrm{~V}$ Farad

Demos

Capacitance

From lecture 4: $\quad E=\frac{Q}{\varepsilon_{0} A}$

$$
Q=\frac{\varepsilon_{o} A}{d} \Delta V
$$

From lecture 7: $\quad \Delta V=E d$

$$
C=\frac{\varepsilon_{o} A}{d}
$$

Capacitance depends only on the dimensions of the capacitor.

Example: demo capacitor, diameter 30 cm , separation 2 mm

Effect of plate separation

Demo

Remove battery Increase plate separation

Because battery is removed, Q remains the same Thus E remains the same
Because $\Delta V=E d, \Delta V$ must increase
Deflection of electroscope increases

Dielectrics

Demo

Insert Teflon sheet between plates of fully charged capacitor Deflection of electroscope decreases

Increased by factor κ. Can store more charge at same potential difference
$\mathrm{K}=80$ for water, 2 for Teflon

Energy

Demo: discharge of capacitor

$$
U=\frac{1}{2} Q \Delta V
$$

Because $Q=C \Delta V$:

$$
U=\frac{1}{2} C(\Delta V)^{2}=\frac{1}{2} \frac{Q^{2}}{C}
$$

Ex.: Energy store in $22,000 \mu \mathrm{~F}$ capacitor at 75 V

Advantage of capacitor: energy is quick to retrieve Battery stores more energy, but slower

Important application: defibrillator

