Lecture 17: Circuits

- Review Junction law + Loop law
- Resistors in series and parallel
- Example
- Measurement

Kirchhoff's Laws: Junction Law

Lecture 14:

Current is the same at all points in a current-carrying wire.

Current is not "used up". Charge cannot be created or destroyed. "What goes in must come out".

ZIIn= ZIONA

Kirchhoff's Laws: Loop Law

Potential energy depends on position.

If we come back to the same point, we come back to the same value of potential energy.

For closed loop: $\Delta U_{el} = 0$ Because V=U/q: $\Delta V=0$

Resistors in series

1 Ballery provides fixed voltage, not fixed current

Resistors in parallel

Practice

Measuring current

- Ammeter in series with the resistor (same current)
- Ideal Ammeter: zero resistance

Measuring voltage

- Voltmeter in parallel with the resistor (same voltage)
- Ideal Voltmeter: infinite resistance

Measuring current and voltage simultaneously

- Voltmeter in parallel with the resistor (same voltage)
- Ammeter in series with the resistor (same current)

WRONG:

all current goes through ammeter, none through resistor