Lecture 35: Wave optics

Refractive index

- In vacuum, electromagnetic waves travel with speed of light $c = 3 \times 10^8 m/s$
- In materials, light slows down because the electromagnetic waves interact with electrons in the material

•
$$n = \frac{speed \ of \ light \ in \ vacuum}{speed \ of \ light \ in \ material} = \frac{c}{v}$$
 Refractive index
• $v < c \rightarrow n > 1$

• $n_{air} \approx 1$

Wavelength and frequency

- $n = \frac{c}{v}$ Refractive index, $n \ge 1$
- The frequency *f* a wave does not change as it moves from one medium to another
- Because n changes, this means that the wave length must change

•
$$\lambda f = v$$

•
$$\lambda_{mat} = \frac{v}{f} = \frac{c}{nf} = \frac{\lambda_{vac}}{n}$$

• Wavelength in material is shorter than the wavelength in vacuum