Lecture 35: Wave optics

Refractive index

- In vacuum, electromagnetic waves travel with speed of light $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- In materials, light slows down because the electromagnetic waves interact with electrons in the material
- $n=\frac{\text { speed of light in vacuum }}{\text { speed of light in material }}=\frac{c}{v}$ Refractive index
- $v \leq c \rightarrow n \geq 1$
- $n_{\text {air }} \approx 1$

Wavelength and frequency

- $n=\frac{c}{v}$ Refractive index, $n \geq 1$
- The frequency f a wave does not change as it moves from one medium to another
- Because n changes, this means that the wave length must change
- $\lambda f=v$
- $\lambda_{\text {mat }}=\frac{v}{f}=\frac{c}{n f}=\frac{\lambda_{v a c}}{n}$
- Wavelength in material is shorter than the wavelength in vacuum

