Starting Equations for Physics 2135

Frequently-Used Official Starting Equations From Engineering Physics I:

$$
\begin{aligned}
& \mathrm{x}=\mathrm{x}_{0}+\mathrm{v}_{0 \mathrm{x}} \Delta \mathrm{t}+\frac{1}{2} \mathrm{a}_{\mathrm{x}}(\Delta \mathrm{t})^{2} \\
& \mathrm{v}_{\mathrm{x}}=\mathrm{v}_{0 \mathrm{x}}+\mathrm{a}_{\mathrm{x}} \Delta \mathrm{t} \\
& \mathrm{v}_{\mathrm{x}}{ }^{2}=\mathrm{v}_{0 \mathrm{x}}{ }^{2}+2 \mathrm{a}_{\mathrm{x}}\left(\mathrm{x}-\mathrm{x}_{0}\right) \quad \sum \overrightarrow{\mathrm{F}}=\mathrm{m} \overrightarrow{\mathrm{a}} \\
& E_{f}-E_{i}=\left(W_{\text {other }}\right)_{i \rightarrow f} \quad E=K+U \quad W_{\text {net }}=\Delta K \quad K=\frac{1}{2} m v^{2} \quad a_{r}=\frac{v^{2}}{r} \quad P_{F}=\frac{d W_{F}}{d t} \\
& \mathrm{P}_{\mathrm{F}}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{~V}} \quad \mathrm{E}=\mathrm{P}_{\text {average }} \mathrm{t} \\
& \Delta \mathrm{U}=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=-\left(\mathrm{W}_{\text {conservative }}\right)_{\mathrm{i} \rightarrow \mathrm{f}} \\
& \vec{p}=m \vec{v} \\
& \overrightarrow{\mathrm{P}}_{\mathrm{i}}=\overrightarrow{\mathrm{P}}_{\mathrm{f}} \text { if } \sum \overrightarrow{\mathrm{F}}_{\text {ext }}=0 \quad\left(\mathrm{~W}_{\text {external }}\right)_{\mathrm{i} \rightarrow \mathrm{f}}=-\left(\mathrm{W}_{\text {conservative }}\right)_{\mathrm{i} \rightarrow \mathrm{f}} \quad \text { if } \Delta \mathrm{K}=0
\end{aligned}
$$

Constants

$\mathrm{k}=\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}} \quad \varepsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}} \quad \mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{~T} \cdot \mathrm{~m}}{\mathrm{~A}} \quad \mathrm{~g}=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$e=1.6 \times 10^{-19} \mathrm{C}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mathrm{c}=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$m_{\text {electron }}=9.11 \times 10^{-31} \mathrm{~kg} \quad \mathrm{~m}_{\text {proton }}=1.67 \times 10^{-27} \mathrm{~kg}$
Electric Force, Field, Potential, and Potential Energy
$\mathrm{F}=\mathrm{k} \frac{\left|\mathrm{q}_{1} \mathrm{q}_{2}\right|}{\mathrm{r}_{12}^{2}} \quad \overrightarrow{\mathrm{~F}}=\mathrm{q} \overrightarrow{\mathrm{E}} \quad \mathrm{E}=\mathrm{k} \frac{|\mathrm{q}|}{\mathrm{r}^{2}} \quad \quad \overrightarrow{\mathrm{E}}=\mathrm{k} \frac{\mathrm{q}}{\mathrm{r}^{2}} \hat{\mathrm{r}} \quad \mathrm{E}_{\text {sheet }}=\frac{|\sigma|}{2 \varepsilon_{0}}$
$\overrightarrow{\mathrm{p}}=\mathrm{q} \overrightarrow{\mathrm{d}}$, from - to $+\quad \vec{\tau}=\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{E}} \quad \mathrm{U}_{\text {dipole }}=-\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{E}} \quad \Phi_{\mathrm{E}}=\int \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}} \quad \oint \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\frac{\mathrm{q}_{\text {enclosed }}}{\varepsilon_{0}}$
$\begin{array}{llll}\Delta \mathrm{U}=\mathrm{q} \Delta \mathrm{V}=\mathrm{q}\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right) & \mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=-\mathrm{q} \int_{\mathrm{i}}^{\mathrm{f}} \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \vec{\ell} & \mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}=-\int_{\mathrm{i}}^{\mathrm{f}} \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \vec{\ell} & |\Delta \mathrm{V}|=\mathrm{Ed} \\ \mathrm{V}(\mathrm{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}} & \mathrm{U}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}_{12}} & \mathrm{~V}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\mathrm{dq}}{\mathrm{r}} & \mathrm{E}_{\mathrm{x}}=-\frac{\partial \mathrm{V}}{\partial \mathrm{x}}\end{array}$

Circuits

$$
\mathrm{C}=\frac{\mathrm{Q}}{\mathrm{~V}} \quad \mathrm{C}=\frac{\kappa \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}=\kappa \mathrm{C}_{0} \quad \mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}=\frac{1}{2} \frac{\mathrm{Q}^{2}}{\mathrm{C}}=\frac{1}{2} \mathrm{QV} \quad \mathrm{C}_{\mathrm{eq}}=\sum_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}
$$

$\frac{1}{\mathrm{C}_{\text {eq }}}=\sum_{\mathrm{i}} \frac{1}{\mathrm{C}_{\mathrm{i}}} \quad \mathrm{I}_{\mathrm{av}}=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}} \quad \mathrm{I}=\frac{\mathrm{dQ}}{\mathrm{dt}} \quad \mathrm{J}=\frac{\mathrm{I}}{\mathrm{A}} \quad \overrightarrow{\mathrm{J}}=\mathrm{nq} \overrightarrow{\mathrm{v}}_{\mathrm{d}} \quad \mathrm{V}=\mathrm{IR} \quad \overrightarrow{\mathrm{J}}=\sigma \overrightarrow{\mathrm{E}}$
$\mathrm{R}=\frac{\rho \ell}{\mathrm{A}} \quad \rho=\frac{1}{\sigma} \quad \rho=\rho_{0}\left[1+\alpha\left(\mathrm{T}-\mathrm{T}_{0}\right)\right] \quad \mathrm{R}_{\mathrm{eq}}=\sum_{\mathrm{i}} \mathrm{R}_{\mathrm{i}} \quad \frac{1}{\mathrm{R}_{\text {eq }}}=\sum_{\mathrm{i}} \frac{1}{\mathrm{R}_{\mathrm{i}}}$
$\mathrm{P}=\mathrm{V} \frac{\mathrm{dq}}{\mathrm{dt}} \quad \mathrm{P}=\mathrm{IV}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\mathrm{I}^{2} \mathrm{R} \quad \mathrm{Q}(\mathrm{t})=\mathrm{Q}_{\text {final }}[1-\exp (-\mathrm{t} / \tau)] \quad \mathrm{Q}(\mathrm{t})=\mathrm{Q}_{0} \exp (-\mathrm{t} / \tau)$
$\tau=\mathrm{RC} \quad \sum \mathrm{I}=0$ at any circuit junction $\quad \sum \mathrm{V}=0$ around any closed circuit loop

Magnetic Force, Magnetic Fields, Inductance

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}=\mathrm{q} \overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}} \quad \overrightarrow{\mathrm{~F}}=\mathrm{q}(\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}}) \quad \overrightarrow{\mathrm{F}}=\mathrm{IL} \times \overrightarrow{\mathrm{B}} \quad \vec{\mu}=\mathrm{NI} \overrightarrow{\mathrm{~A}} \text { (N=1 for single loop) } \quad \vec{\tau}=\vec{\mu} \times \overrightarrow{\mathrm{B}} \\
& \mathrm{U}=-\vec{\mu} \cdot \overrightarrow{\mathrm{B}} \quad \mathrm{~B}=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}} \quad \oint \overrightarrow{\mathrm{~B}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~s}}=\mu_{0}\left(\mathrm{I}_{\mathrm{encl}}+\kappa \varepsilon_{0} \frac{\mathrm{~d} \Phi_{\mathrm{E}}}{\mathrm{dt}}\right) \quad \Phi_{\mathrm{B}}=\int \overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}} \quad \oint \overrightarrow{\mathrm{~B}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}=0 \\
& B=\mu_{0} \frac{N}{\ell} I=\mu_{0} n I \quad B=\frac{\mu_{0} N I}{2 \pi r} \quad \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{q} \overrightarrow{\mathrm{~V}} \times \hat{\mathrm{r}}}{\mathrm{r}^{2}} \\
& \mathrm{~d} \overrightarrow{\mathrm{~B}}=\frac{\mu_{0} \mathrm{I}}{4 \pi} \frac{\mathrm{~d} \overrightarrow{\mathrm{~s}} \times \hat{\mathrm{r}}}{\mathrm{r}^{2}} \\
& \varepsilon=-\mathrm{N} \frac{\mathrm{~d} \Phi_{\mathrm{B}}}{\mathrm{dt}} \\
& \oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~s}}=-\frac{\mathrm{d} \Phi_{\mathrm{B}}}{\mathrm{dt}} \quad \mathrm{I}_{\text {displ }}=\kappa \varepsilon_{0} \frac{\mathrm{~d} \Phi_{\mathrm{E}}}{\mathrm{dt}}
\end{aligned}
$$

Electromagnetic Waves

$\overrightarrow{\mathrm{S}}=\frac{1}{\mu_{0}} \overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}}$
$\mathrm{I}=\langle\mathrm{S}\rangle=\frac{1}{2} \mathrm{c} \varepsilon_{0} \mathrm{E}_{\max }^{2}=\frac{1}{2} \frac{\mathrm{E}_{\text {max }}^{2}}{\mu_{0} \mathrm{c}}=\frac{1}{2} \frac{\mathrm{cB}_{\text {max }}^{2}}{\mu_{0}}$
$\frac{E_{\text {max }}}{B_{\text {max }}}=\frac{E}{B}=c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$
$I=\frac{P}{\text { area }}$
$\mathrm{u}_{\mathrm{B}}=\mathrm{u}_{\mathrm{E}}=\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}=\frac{1}{2} \frac{\mathrm{~B}^{2}}{\mu_{0}}$
$\langle\mathrm{u}\rangle=\frac{1}{2} \varepsilon_{0} \mathrm{E}_{\max }^{2}=\frac{1}{2} \frac{\mathrm{~B}_{\max }^{2}}{\mu_{0}}$
$\left\langle\mathrm{u}_{\mathrm{B}}\right\rangle=\frac{1}{4} \frac{\mathrm{~B}_{\max }^{2}}{\mu_{0}}$
$\left\langle\mathrm{u}_{\mathrm{E}}\right\rangle=\frac{1}{4} \varepsilon_{0} \mathrm{E}_{\text {max }}^{2}$
$\mathrm{I}=\langle\mathrm{S}\rangle=\mathrm{c}\langle\mathrm{u}\rangle$
$\left\langle\mathrm{P}_{\mathrm{rad}}\right\rangle=\frac{\mathrm{I}}{\mathrm{C}}$ or $\frac{2 \mathrm{I}}{\mathrm{c}}$
$\mathrm{k}=\frac{2 \pi}{\lambda}$
$\omega=2 \pi \mathrm{f}=\frac{2 \pi}{\mathrm{~T}}$
$\mathrm{f} \lambda=\frac{\omega}{\mathrm{k}}=\mathrm{c} \quad \mathrm{T}=\frac{1}{\mathrm{f}}$

Optics

$$
\begin{aligned}
& \mathrm{v}=\mathrm{f} \lambda=\frac{\omega}{\mathrm{k}} \quad \theta_{\mathrm{i}}=\theta_{\mathrm{r}} \quad \mathrm{n}=\frac{\mathrm{c}}{\mathrm{v}} \quad \lambda_{\mathrm{n}}=\frac{\lambda}{\mathrm{n}} \quad \mathrm{n}_{\mathrm{a}} \sin \theta_{\mathrm{a}}=\mathrm{n}_{\mathrm{b}} \sin \theta_{\mathrm{b}} \\
& \mathrm{I}=\mathrm{I}_{\max } \cos ^{2} \phi \quad \frac{1}{\mathrm{~s}}+\frac{1}{\mathrm{~s}^{\prime}}=\frac{1}{\mathrm{f}} \quad \mathrm{f}=\frac{\mathrm{R}}{2} \quad \mathrm{~m}=\frac{\mathrm{y}^{\prime}}{\mathrm{y}}=-\frac{\mathrm{s}^{\prime}}{\mathrm{s}} \quad \frac{\mathrm{n}_{\mathrm{a}}}{\mathrm{~s}}+\frac{\mathrm{n}_{\mathrm{b}}}{\mathrm{~s}^{\prime}}=\frac{\mathrm{n}_{\mathrm{b}}-\mathrm{n}_{\mathrm{a}}}{\mathrm{R}} \quad \mathrm{~m}=\frac{\mathrm{y}^{\prime}}{\mathrm{y}}=-\frac{\mathrm{n}_{\mathrm{a}} \mathrm{~s}^{\prime}}{\mathrm{n}_{\mathrm{b}} \mathrm{~s}} \\
& \frac{1}{\mathrm{f}}=(\mathrm{n}-1)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right) \quad \mathrm{m} \lambda=\mathrm{d} \sin \theta \quad\left(\mathrm{~m}+\frac{1}{2}\right) \lambda=\mathrm{d} \sin \theta \quad \phi=\frac{2 \pi}{\lambda} \mathrm{~d} \sin \theta \quad \mathrm{I}_{0}=4 \mathrm{I} \\
& \mathrm{I}=\mathrm{I}_{0} \cos ^{2}\left(\frac{\phi}{2}\right) \quad \mathrm{a} \sin \theta=\mathrm{m} \lambda \quad \beta=\frac{2 \pi}{\lambda} \mathrm{a} \sin \theta \quad \mathrm{I}=\mathrm{I}_{0}\left[\frac{\sin (\beta / 2)}{(\beta / 2)}\right]^{2} \quad \mathrm{R}=\frac{\lambda_{a v g}}{\Delta \lambda}=\mathrm{Nm}
\end{aligned}
$$

Mathematics

$\mathrm{V}_{\text {sphere }}=\frac{4}{3} \pi \mathrm{r}^{3}$
$\mathrm{A}_{\text {sphere }}=4 \pi \mathrm{r}^{2}$
$\mathrm{A}_{\text {cylinder }}=2 \pi \mathrm{rL} \quad$ (excluding ends)

